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Psychologists have studied people’s intuitive notions of randomness by two kinds 
of tasks: judgment tasks (e.g., “is this series like a coin?” or “which of these series 
is most like a coin?“), and production tasks (e.g., “produce a series like a coin”). 
People’s notion of randomness is biased in that they see clumps or streaks in truly 
random series and expect more alternation, or shorter runs, than are there. 
Similarly, they produce series with higher than expected alternation rates. Produc- 
tion tasks are subject to other biases as well, resulting from various functional 
limitations. The subjectively ideal random sequence obeys “local representative- 
ness”; namely, in short segments of it, it represents both the relative frequencies 
(e.g., for a coin, 50%-50%) and the irregularity (avoidance of runs and other 
patterns). The extent to which this bias is a handicap in the real world is 
addressed. o 1991 Academic press, ~nc. 

Randomness is a concept which somehow eludes satisfactory definition. 
Devices which are random by definition, such as fair coins, can nonethe- 
less generate series of outcomes which lack the appearance of randomness 
(e.g., a very long string of heads), while some digit series, although clearly 
patterned, define normal numbers, namely, numbers whose decimal form 
provably passes all tests for randomness (e.g., the infinite series obtained 
from writing down all the counting numbers in order: 

1234567891011121314151617181920212223...). 

*Paper based on a lecture given in a conference on Randomness, Columbus, Ohio, April 
1988. 
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In effect, randomness is an unobservable property of a generating 
process. Theory can assume this property, but in practice it can only be 
inferred indirectly, from properties of the generator’s output. The inspec- 
tion of outputs for “randomness” involves subjecting them to various 
statistical tests of these necessary, but not sufficient, properties. The 
conclusions based on these tests are thus inherently statistical in 
nature-there are no logical or physical proofs of randomness. 

Why Study the Perception of Randomness? 

Where people see patterns, they seek, and often see, meaning. Regard- 
ing something as random is attributing it to (mere, or blind) chance. 
Perceiving events as random or non-random has significance for the 
conduct of human affairs, since matters of consequence may depend on it. 
The market price of stocks is essentially a random walk, but people see 
trends in it, with the help of which they attempt to predict future prices. 
People may be promoted (or demoted) for strings of job related successes 
(or failures) that are in effect no more than chance results. Coincidences 
are given significant, and often even mystical, interpretations, because 
their occurrence seems to transcend statistical explanation. 

The categorization of events into random or non-random is often done 
intuitively. Moreover, the emergence of “patterns” from what is essentially 
“noise” is so powerful, that people may reject the statistical analysis, even 
when it is available, in favor of the intuitive feeling. The perception, 
whether visual or conceptual, is so compelling as to withstand analysis. 
Much as the famous Miiller-Lyer illusion is not dispelled by measurement 
(see Fig. 11, the perceived “clumping” of random events is not dispelled by 
statistical analysis (see Fig. 2). Indeed, it has led to the development of 
what statisticians call clumping theory. 

One of the best known examples of the misperception of randomness 
concerns the pattern of German flying-bombs that hit London during 
World War II. “Most people believed in a tendency of the points of 

FIG. 1. The Muller-Lyer illusion. The arrows are of equal length. 
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FIG. 2. A binary matrix with a 0.5 alternation rate. 

impact to cluster,” though analysis showed the “fit of the Poisson distribu- 
tion [to be] surprisingly good” indicating “perfect randomness. . . ; we have 
here an instructive illustration of the established fact that to the trained 
eye randomness appears as regularity or tendency to cluster” (Feller, 1950, 
p. 120). Another well-known example is people’s incredulity at the fact 
that among a sample of 40 people, chances are in excess of 90% that two 
will share a birthday. A perhaps less well-known example is often ex- 
ploited by so-called “psychics,” whose success at predicting people’s 
supposedly “random” generations (“pick a number between 50 and 99, 
made of two different, and odd, digits”) results from the combined facts 
that these generations are not really random and that the probability of 
both the “psychic” and the “medium” choosing the same number, even if 
it were really done at random, is highly underestimated (Marks and 
Kammann, 1980). As a final example, clumping causes people’s experience 
often to bear out the superstition that “bad luck comes in threes.” 

The motivation for studying perceptions of randomness could also come 
from an interest in intuition. Intuition is accorded an important and 
respectable role in many types of judgments. Modern linguistics regards (a 
competent native speaker’s reflective) intuition to be the final arbiter of 
grammaticality. In aesthetics (e.g., judging the quality of a piece of art) or 
ethics (e.g., judging the fairness of an allocation rule) intuition is often all 
there is to go by. When judging the pitch of a tone, the temperature of a 
tub of water, or the mean of a set of data points-intuitive judgments are 
found to often provide acceptable, yet quick and ready, approximations to 
objective measurement. The study of “intuitive tests of randomness,” so to 
speak, thus acquires some interest also in comparison with normative tests 
thereof, even though-or because-there is no single statistical test suf- 
ficient to establish randomness. 

This paper examines some of the evidence collected by psychologists 
about people’s intuitions regarding randomness. Psychologists have not 
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themselves endeavored to define randomness. Rather, they have studied 
people’s judgments of randomness, and their ability to “generate,” or 
simulate, randomness. Often, though not always, they bypassed the prob- 
lematics of the concept by omitting any mention of “randomness” in their 
instructions to subjects and, instead, talked directly about standard and 
familiar “random devices,” such as coins or dies. For example, Bakan [3] 
instructed subjects “to produce a series of ‘heads’ and ‘tails’ such as they 
might expect to occur if an unbiased coin were tossed in an unbiased way.” 
The subjects’ output is then compared with either a formal analysis or a 
simulation of the device in question on the properties of choice.’ 

The paper is organized according to: a. What-the descriptive proper- 
ties of people’s judgments and/or productions; b. How-modelling the 
judgmental process and/or the cognitive production mechanism; c. Why 
-what sustains the erroneous subjective concept of randomness, and why 
it is not unlearned with experience. 

We attempted a thorough, though not exhaustive, survey of the psycho- 
logical literature on the perception of randomness. A small number of 
studies was selected for special, and more detailed, attention. In the 
course of surveying these studies we have digressed occasionally into 
tangential, but relevant, issues in general cognitive psychology. We hope 
the reader finds these digressions to be of interest. 

A. WHAT? 

It is perhaps unfortunate that early laboratory studies of the perception 
of randomness relied on production tasks (“do like a coin”) rather than 
judgment tasks (“is this like a coin?“), and the former still form a majority 
of the existent studies. Insofar as systematic biases are found in such tasks, 
it is apparent that they could be either accurate reflections of biased 
notions of randomness, or biased reflections of accurate notions of ran- 
domness (or both). By analogy, people who have linguistic competence 
may still produce ungrammatical sentences in actual speech, and people 
who have a good musical ear may fail to carry a tune properly. Hence, 
judgment tasks are a purer way of studying the perception of randomness. 
Nonetheless, the basic biases in subjective perceptions of randomness 
were discovered already by the early production tasks. 

‘Occasionally, instructions have been biased. For example, Baddeley’s [2] told subjects that 
the kind of random sequence they were expected to generate “would be completely jumbled 
and would not therefore be likely to comprise [meaningful patterns]” (p. 119). A critique of 
other instructions can be found in Ayton, Hunt, and Wright [l]. 
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TABLE I 
Description of Ten Pre-1970 Random Production Studies 

Author & year # of symbols Symbols Length Medium Pace 

4,2,1, .5 
2 
1 

- 
- 

N 

12 
12 

124 
120 
92 

- 

0.5 
0.75 
1 

? 

? 
? 

- 

- 
1 

- 

70 

13 

20 
20 
20 

60 

1.5 
15 

4 
4 

2 
3 
3 

0.25,0.5, 
0.75 

1 

2 

28 

2.45 20 

Baddeley ‘66 26 Letters 
26 Letters 
2,4,8,16,26 Letters 
2,4,8,16,26 Letters 
2,4,8,16,26 Digits 

2 x 100 Saying 
16 x 100 Saying 
3 x 120 Writing 
3x? Writing 
3X? Writing 

2 x 150 Writing 

1 X 2520 Writing 

10 x 250 Writing 
10 x 250 Writing 
10 x 250 Writing 

1 x 100 Stamping 

8 x 20 Writing 
4 x 20 Writing 

1 x 1252 Saying 
1 x 1252 Saying 

1 x 251 Saying 
1 x 751 Saying 
1 x 752 Saying 

6 x 500 Saying 

1 x 600 Pushing 

1 x 45 Writing 

Bakan ‘60 

Chapanis ‘53 

Rath ‘66 

2 

10 Digits 

2 Digits 
10 Digits 
26 Letters 

Ross ‘55 

Ross & ‘58 
Levy ‘58 

Teraoka ‘63 

2 Digits 

2 H/T 
2 H/T 

5 Digits 
5 Letters 

5 Syllables 
5 Digits 
5 Digits 

Warren & 
Morin ‘65 274,s Digits 

Weiss ‘64 2 Buttons 

Wolitzky & 
Spence ‘68 10 Digits 

The Basic Findings 

Table I (from Wagenaar [48]) shows the many varieties of tasks that 
were used in several early studies of random productions (an even earlier 
review can be found in Tune [42, 431). These studies were startingly 
unsystematic. The number of alternatives varied from 2 (e.g., heads-tails, 
digits, card suits) to 26 (letters), produced in from 1 to 16 series per 
subject, of length from 20 up to 2520 each. Mode of production (e.g., 
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TABLE II 
Results of Ten Pre-1970 Random Production Studies 

Author & Year Measure 

Baddeley ‘66 

Bakan ‘60 

Chapanis ‘53 

Rath ‘66 

Ross ‘55 

Ross & 
Levy 

Teraoka 

‘58 
‘58 
‘63 

Warren & 
Morin ‘65 

Weiss ‘64 

Wolitzky & 
Spence ‘68 

Stereotyped and 
repeated digrams 

redundancy 
number of runs 
alternation and 

symmetry in trigrams 
frequency of singletons 
frequency of singletons 
frequency of digrams 

and trigrams 
autocorrelation 
frequency of singletons 
frequency of digrams, 

corrected; modified 
frequency of trigrams, 

corrected 
frequency of singletons 
number of alternations 
number of alternations 
occurrence of runs 
frequency of singletons 
conditional probabilities 
frequency of digrams, 

modified 
frequency of runs 

redundancy 
frequency of n-grams, 

corrected 
frequency of trigrams 

frequency of singletons 

Order Results 

1 
0 
1 

2 
0 
0 

192 
l,? 
0 

1 

2 
0 
1 
1 
l-? 
0 
1 

1 
l-4 

o-3 

l-9 

0 

stereotyped digrams 
unbalanced frequencies of 

l- and 2-grams 
avoidance of symmetric 

response patterns 

unbalanced frequencies of 
1,2, and 3-grams 

preference to decreasing 
over increasing series 

preference for symbols 
adjacent in the natural 
order 

overuse of run length with 
expected frequency 2 1 

stringing responses in their 
natural order 

dependencies over gaps of 5 
periodicity with cycle 5 

preference for symmetric 
trigrams 

writing, calling out), as well as speed (from no limitation to 4/s), availabil- 
ity of memory aids (from none to complete record), and other factors, also 
varied across the studies. With the exception of number of alternatives 
and the required production rate, these variables were not varied within a 
single study. 

Table II gives the measures or tests for nonrandomness that these 
studies employed. Deviations from randomness can appear in various 
forms. First, it is possible that the various alternatives be chosen with 
unequal frequencies. This is called a zero-order sequential effect, because 
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it does not involve any sequential property of the response series. Then, it 
is possible that the first-order transition probabilities reveal a sequential 
dependency. This first-order sequential dependency would appear as a 
deviation from the expected frequencies of pair combinations (or, equiva- 
lently, from the expected number of either alternations or runs). First-order 
effects extend across a distance of one in the sequence. Higher order 
effects test for dependencies between elements that are two, three, etc., 
places apart in the sequence. Some statistical measures of randomness 
confound effects of various orders (e.g., a paucity of runs of length n 
subsumes a first-order alternation effect), and some require longer se- 
quences than others in order to apply meaningfully (e.g., testing runs of 
length IZ + m versus of length n). Statistically equivalent measures may 
correspond to different psychological processes, so the distinctions be- 
tween them should be kept in mind for interpretative purposes. 

The findings of these studies were reported in terms of the measures 
selected, and sometimes invented, by their authors (see Table II). In spite 
of the variety of tasks and measures used, two fairly robust findings 
emerged from these studies, that have since withstood the test of time. 
The first concerns what are essentially motor biases, specific to the 
production task, and to the medium within which it is performed. It has no 
parallel in judgment tasks and is not a reflection of notions of randomness. 
This is overpreponderance of short strings (2 or 3) of symbols that are 
adjacent in some “natural” sequence (e.g., consecutive numbers or letters) 
or some artifactual one (e.g., on the keyboard). We shall have little further 
to say about this finding. 

The second is that “human produced sequences have too few symme- 
tries and long runs, too many alternations among events, and too much 
balancing of event frequencies over relatively short regions” [29, p. 3921. 
The alternation bias is also called the negative recency effect, and it 
confirms an hypothesis which Reichenbach had stated as early as 1934 
[35]. The balancing over short regions is also called the local representatiue- 
ness effect [22]. These closely related effects have been found to extend up 
to the sixth order of dependency. They are regarded as essentially cogni- 
tive biases, and as such, they have direct counterparts in judgment tasks. 

In typical judgment tasks, sequences are presented to subjects, who are 
requested to select the sequence that is “more likely to have been 
produced by a fair coin” or “most random,” or-conversely-which is 
“most patterned.” Few researchers thought to study the perception of 
randomness in matched judgment and production tasks. An exception is 
Falk [14], who asked subjects to rate for “randomness” exactly the same 
kinds of binary strings or binary matrices that her other subjects had been 
required to generate. In the production phase, Falk gave subjects 20 green 
and 20 yellow cards and asked them to line them up “the way they would 
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Judgment Production 
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FIG. 3. Results of Falk’s 1981 study, separated for the judgment and the production tasks. 

be if they were well shuffled.“* She found the preferred alternation rate to 
be not 0.5, but 0.6. Falk extended her study to two-dimensional 
arrays-specifically, 10 x 10 matrices-instructing her subjects to color 50 
of the 100 cells a single color “in a random way.” She then generalized the 
notion of “alternation” to the matrix, defining it as two different-colored 
cells with a shared side. Falk found that the preferred alternation rate in 
the two-dimensional arrays was again 0.6, “equal to the 99th percentile in 
the mathematical sampling distribution of random binary tables” of this 
kind [15]. In the analogous one- and two-dimensional judgment tasks, Falk 
found the same alternation rate (i.e., 0.6) to be rated as most random, in 
preference even to strings (or matrices) with an alternation rate of 
0.5-which is the statistically expected value (see Fig. 2). Indeed, ask 
yourself how random you find the matrix in Fig. 2, which was generated by 
coloring each cell of the array with p = 0.5. 

Wagenaar [45] found the same bias. Presenting subjects with seven 
binary sequences at a time of white and black dots on a neutral gray 
background, he too found that “sequences with conditional probabilities 
[of repetition] around 0.4 were judged as most random” (p. 348). Some 
studies have reported higher alternation rates as subjectively “most ran- 
dom” (0.7-0.8 in Gilovich, Vallone, and Tversky’s, 1985 “Hot hand” study 
described below [ 181). 

In between-subject designs, the correlation between production biases 
and judgment biases is rather weak, around 0.3 for first-order deviation 
from randomness, dropping to about 0.2 for second-order effects, and 

*This is not, of course, a Bernoulli process. 
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virtually disappearing for higher order effects [46; also 54, 551. These tasks, 
however, were not as well matched as Falk’s. 

Other Judgment Studies 

a. Detecting random from non-random strings. Lopes and Oden [29] 
studied judgments of randomness within a totally different paradigm-that 
known as signal detection. Their stimuli were short binary strings (length 8) 
-much shorter than the strings which production tasks ask for. These 
strings were computer-generated on-line for each subject (so they could be 
different for each subject). A subject viewed 250 strings generated by a 
Bernoulli process with p = 0.5. These were randomly interspersed with 
250 strings generated by a process with an alternation probability of 0.8 
(or, for other subjects, with an alternation probability of 0.2). On each 
trial, subjects guessed which process had generated the presented string 
and were given a small monetary reward if they guessed correctly. Note 
that “correct” here is literal, not to be confused with “optimal.” 

Subjects’ performance (i.e., percent correct) was compared with the 
actual (rather than expected) percent correct of an “optimal” rule based 
on maximum likelihood. The rule averaged about 82% correct. The 
subjects’ hit rate depended on the conditions under which they were 
guessing, namely: were they in the 0.8 or in the 0.2 alternation rate 
group?; were they informed about the direction of the alternation bias, or 
not?; if not, did they get trial-by-trial feedback about the correct source of 
the string? The results appear in Table III. All subjects performed at 
better than chance level, and those operating under the most favorable 
conditions did not do much worse than the optimal rule. There was 
considerable variability in percent correct as a function of the type of 
string (i.e., did the string exhibit a cyclic or mirror symmetry, or had it no 
particular pattern?)-the hit rate was much higher for the non-patterned 
strings, in line with familiar biases noted earlier. But even though perfor- 
mance for some types of strings fell considerably short even of chance, the 

TABLE III 
Probability of Making Correct Choice between Random and 

Non-random Source’ 

Uninformed; pcrepetition) = 0.8 
Informed; pcrepetition) = 0.8 
Feedback; p(repetition) = 0.8 

[changed from 64% to 74%] 

65% 
71% 
71% 

Uninformed; p(alternation) = 0.8 52% 
Informed; p(alternation) = 0.8 67% 
Feedback; pcalternation) = 0.8 67% 

[changed from 56% to 76%] 

‘Results of Lopes and Oden’s [29] study. 



ON PERCEPTION OF RANDOMNESS 437 

ecological rarity of these “trick” strings prevented them from having much 
of an effect on overall performance. Lopes and Oden concluded that 
“biases in people’s conceptions of randomness, although real enough, are 
less important to performance in the detection task than [whether or not 
judges know the direction of the bias in the non-Bernoulli process]” 
(p. 398). These results are compatible with previous findings (e.g., [SD that 
showed people to be more successful in correctly selecting the more 
“random” stimulus when the distracters happen to be highly patterned 
(e.g., regular or symmetric) or frequency biased (i.e., contain a preponder- 
ance of one of the two symbols). 

b. The “hot hand” in basketball. A provocative judgment study, whose 
conclusions raised much passionate debate was done by Gilovich et al. 
1181. Rather than only manufacture artificial stimuli and ask subjects for 
their judgments, this study took as its point of departure a pre-existing 
naturally formed judgment and checked for its validity. The judgment in 
question is the belief, shared by basketball spectators and participants 
alike, in the existence of a “hot hand” or “streak shooting” phenomenon. 

A corollary of the negative recency effect (and an example of the 
clumping effect) is that strings exhibiting the mathematically expected 
number of alternations will contain runs that appear to people to be 
inordinately long, hence “non-random.” In a basketball context this could 
mean that a player’s string of shots in a game will occasionally exhibit 
noticeable “streaks” of hits even if it is generated by a stationary process. 
Indeed, “analyses of the shooting records of the Philadelphia 76ers [in- 
cluding reputed streak shooter Andrew Toney] provided no evidence [for 
streak shooting]” (Gilovich et al., [18, p. 2951). Contrary to the belief of 
100 basketball fans who were surveyed for their beliefs regarding sequen- 
tial dependence among shots, the very data forming the basis for this 
belief shows unequivocally that the probability that a player will make a 
given shot is not higher after having made a previous shot than after 
having missed it. Significantly, when Gilovich et al.‘s subjects were shown 
on paper strings of 11 X’s and 10 O’s that were created using an 
alternation probability of 0.5, they saw streaks there, too. Apparently, the 
“streaks” that basketball aficionados report seeing in the game of some 
player are no more streaky than those exhibited by a random device whose 
p matches that player’s hit rate. Hence players, even when they streak- 
shoot, are actually no “hotter” than random coins. 

c. The gambler’s fallacy. The gambler’s fallacy is another name for the 
negative recency effect. It refers to gamblers’ reputed tendency in a game 
of roulette to gamble on red after a run of blacks. In an ingenious study, 
Gold and Hester [19] demonstrated that this belief extends to an expecta- 
tion that random devices somehow “intentionally monitor” their own 
output to make sure it balances out. Their subjects were shown a (secretly 
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manipulated) sequence of coin tosses. On each trial, a “winning side” was 
specified, and subjects chose whether or not to gamble on it. If they did, 
they earned 100 points on the winning side, 0 otherwise. If they did not, 
they simply got 70 points. 70 points was chosen because this is the value 
around which subjects usually split evenly between preferring the gamble 
or the sure thing. However, following a run of heads (tails), the subjects 
clearly preferred the gamble when the winning side was specified as tails 
(heads) and the sure thing when it was specified as heads (tails). This 
behavior is consistent with the gambler’s fallacy. This was the case even 
for subjects whose verbally expressed beliefs countermanded the gambler’s 
fallacy. Gold and Hester’s most piquant finding is that either switching 
coins before the target toss, or allowing the coin to “rest” awhile prior to 
it, reversed this preference for the gamble almost completely. It is as if 
subjects believe that the “mechanism” that “causes” the coin to exhibit 
negative recency is a memory-type one: it does not carry over from coin to 
coin, and it decays over time. 

Other Production Studies 

a. Production tusks with a large number of symbols. Whereas judgments 
are not biased in terms of zero-order effects (i.e., relative frequencies), nor 
are productions which utilize a small number (e.g., two) of elements, 
production frequencies are seldom uniform when a large number of 
symbols is involved (see, e.g., Tables I and II>. As a case in point, 
Triesman and Faulkner [41] found that, when asked to produce random 
sequences of the digits, subjects did not always produce uniform distribu- 
tions. For example, 0 and 1 were typically underrepresented, while 3 was 
overrepresented (see Fig. 4). Moreover, this bias represents a consistent 
and systematic individual difference between subjects. The mean correla- 
tion between the distributions of digit frequencies given by subjects in two 
sessions conducted on different days was 0.79. Other tasks where re- 
sponses allegedly drawn at random from a uniform distribution are not 
uniformly distributed will be mentioned in the section Can people generate 
u single response “randomly”? below. 

b. Avoidance of patterns. Kubovy and Gilden [25] gave subjects an 
answer sheet designed for multiple choice tests and asked them to fill in 
the 240 circles in sequence, according to whether they imagine a coin 
coming up heads or tails. They found their subjects careful to maintain a 
balance of 50%-50% within short sequences (4 to 111, but found little 
evidence that subjects avoid “patterned” sequences, such as 000111, or 
010010. By their own admission, however, such patterns have low salience 
when embedded in larger series (e.g., how salient are these two patterns in 
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Flc. 4. Distribution of responses for six subjects in Triesman and Faulkner’s [41] study. 
The numbers on the left are the cross-session correlations. 

the sequence: 10100100011101101?), and are harder to control than the 
short-range balance. 

c. Stationurines in production. Budescu [5] tested for, and found, sta- 
tionariness in the series produced by his subjects. His subjects generated 
60 series at most, however, and few if any of the subject-generated binary 
sequences extended to more than a few hundred elements. This is too 
short to test an hypothesis such that tolerance for, therefore the frequency 
of, longer runs or symmetric patterns will increase as the series 
extends-even if the rate of this increase will not be nearly enough. If this 
hypothesis is true, then the familiar biases can exist even in the absence of 
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stationariness. Indeed, Wagenaar [47] reported that “non-randomness 
decreases with time spent at the task” (p. 78). 

d. Probability learning: Predicting random sequences. A paradigm that 
utilized production for purposes of prediction generated much research in 
the 50’s and 60’s (see [13, 211). Subjects predict a randomly generated 
binary sequence trial by trial, with feedback given after every trial. The 
proportions of the two symbols were typically not equal. The major finding 
in the probability learning paradigm is called probability matching: sub- 
jects’ prediction frequencies eventually came to match the observed fre- 
quency in the sequence. Though this is a clear manifestation that subjects 
learned the production probabilities, matching has a lower expected 
accuracy than merely predicting the majority category throughout (since 
p x p + (1 -p) x (1 - p) <p, for every i < p < 1). More pertinent to 
present purposes, subjects’ predictions “seemed to have preferences for 
patterns.. . reflecting their ideas of chance” [42, p. 2941, namely, avoidance 
of long runs. 

A Learning Study 

Although people’s productions have failed many different types of tests 
for randomness, suitable feedback and training can apparently teach them 
how to overcome the biases they tend to exhibit. The most ambitious and 
thorough study of this kind was carried out by Neuringer [33]. In the 
Before phase, 11 students generated 60 series of 100 binary responses 
each (by self-paced typing of two digits on a computer keypad “as 
randomly as possible”). In the Feedback phase, feedback from several 
statistical descriptors was given just after each additional series of 100 
responses was generated. There were two Feedback conditions, utilizing 
either five or ten descriptors (with 7 subjects in the first, 4 in the second 
condition). The set of descriptors is described in Table IV. 

Feedback was given as follows: for each descriptor, five equiprobable 
categories were found by computer simulation, and subjects were shown a 
tabulation of the quintile values which their series of 100 responses had 
scored on the descriptors. They were told to try to produce an equal 
number of series in each of the five categories (quintiles). Subjects were 
started out with feedback on descriptor 1 only. As soon as they had 
managed to generate at least one series in each quintile, feedback on the 
second descriptor was added, until the same criterion was achieved on it, 
too, at which point the third descriptor was added for feedback purposes, 
etc. 

Sessions lasted about an hour, in which time subjects typically produced 
60 series (100 long) each. Subjects were free to ask questions and were 
given some explicit suggestions on how they might improve their perfor- 
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TABLE IV 
The Statistical Descriptors Used in Neuringer’s [33] Study 

The first batch of five descriptors, in order of their introduction” 
1. RNGl Based on the deviation of the observed frequencies of the 4 

kinds of digrams from their expectancies 
2. RNG2 Likewise, but alternate (rather than contiguous) responses are paired 
3. Cl Likewise, but response i of trial n is paired with response i of n + 1 
4. c2 Likewise, but response i of trial n is paired with response i of n + 2 
5. Number of alternations 

The second batch of five descriptors, in order of their introduction 
6. Relative frequency of the binary symbols 
7. RUNS1 Number of singletons 
8. RUNS2 Number of doubletons 
9. RUNS3 Number of triplets 

10. RUNS4 Number of quartets 

“The notations and terminology are Neuringer’s. 

mance (i.e., how they might generate a series whose appropriate descriptor 
would fall into a chosen category). Feedback sessions were piled up as 
long as was necessary for a subject to reach a criterion of 60 consecutive 
series (or 2 x 60, in the lo-descriptor condition), none of which deviated 
significantly (according to the Kolmogorov-Smirnoff statistic) from the 
computer-generated “random” series on any of the five (or 10) descriptors. 
Although there was considerable variance in learning speed, all subjects 
eventually reached this criterion (e.g., after a maximum of 483 feedback 
trials when five measures were used, and 1771 when 10 measures were 
used).3 

The last 60 series were additionally analyzed according to eight new 
descriptors on which subjects had not been trained (e.g., binomial test, 
one-sample runs test, some chi-square tests, and some auto-correlations). 
These are tests which naive subjects typically fail. However, two of the 
four trained subjects passed all eight new tests, and the other two passed 
six of them (though the combined responses of the last 60 series-i.e., 
6000 responses per subject-failed some tests for all subjects). 

In addition to these subjects, Neuringer himself served as a lone subject 
receiving feedback on 30 statistical descriptors in a lo-symbol generation 
task and eventually achieved criterion performance [32]. 

Neuringer was quick to admit that “for both a priori and empirical 
reasons, we cannot conclude that subjects learned to behave ‘truly ran- 

‘Needless to say, no such improvements were noted in a control group receiving no 
feedback. 
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domly’ ” [33, p. 73]. Moreover, whatever it was that subjects did learn was 
not permanent in that it seemed to deteriorate markedly as soon as 
feedback was discontinued. 

B. How? 

Is There a Random Device in the Mind? 

There is much evidence to show that people perform certain cognitive 
tasks by constructing or consulting mental images, little “pictures in the 
head,” on which mental operations are performed in analogy to 
the operations that the represented object would have been subjected to in 
the physical world. For example, when asked on which side of his head 
George Bush parts his hair, many people report that they form a mental 
image of George Bush, and “look” at it to “see” the answer [23]; when 
asked what letter is formed when the letter N is rotated 90” clockwise, they 
report “rotating” a little mental picture of N in their head [9]; when asked 
at what speed a car was going when it crashed, people consult a mental 
video of the accident [27]. 

It thus could, in principle, have been the case that when people are 
asked to produce “heads” and “tails” as if they were tossing a coin, they 
form a mental image of a coin in their head, “toss” it, and read out the 
observed results. Alas, that seems not to be the case. Might there, 
nonetheless, be some “random device” in the mind, or in the nervous 
system, that generates the responses subjects produce, but, unlike mental 
imaging, is opaque to introspection? The observed biases could be intro- 
duced at a later stage by the “reporter” of the random device’s outcomes. 

There are a priori grounds against the plausibility of “random genera- 
tors in the mind.” First, when good random devices are so notoriously 
difficult to find in the external physical world-why would there be any in 
the mind? Second, an internal random device subject to censorship, 
instead of accounting for the presence of biases, merely adds the question: 
“how does the internal random generator work?” Third, the model smacks 
of homunculism. It is a little like explaining the creations of a mediocre 
composer as the result of some unfortunate mental meddling in the 
creations of a little Mozart residing in the mediocre composer’s head. 
Nonetheless, some have argued for this possibility (e.g., [41]). 

Kubovy and Gilden [25] tested a production model according to which 
people have an internal random device which generates strings, but those 
strings that turn out insufficiently representative are blocked or censored. 
They subjected Bernoulli strings to various kinds of “representativeness 
filters” (such as: “eliminate strings with runs longer than 4”; “eliminate 
strings with perfect alternation”; etc.) and compared this truncated set to 
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FIG. 5. The perfectly ordered true-false test, according to Linus (PEANUTS 
character 0 1952, UFS, Inc.). 

a set of human productions. The deviations between the simulation and 
the real thing was too large and systematic to be chalked to chance. 
Strangely, Kubovy and Gilden concluded that the observed biases in 
“subjective randomness” cannot be the result of representativeness filters, 
rather than concluding that there cannot be a random generator in the 
head. 

The Account by Local Representativeness 

In the accompanying “Peanuts” strip (Fig. 5), Linus is taking a true- 
or-false exam. Linus is assuming, presumably, that true-or-false test devel- 
opers randomize the order of correct answers to foil the testees, yet he 
attempts to predict this order. His paradoxical conclusion: “If you’re smart 
you can pass a true or false test without being smart!” nicely captures the 
essence of the paradox of randomness: in order to be perceived as 
random, sequences cannot be afforded to be constructed at random.4 “[AIs 
a series of digits. . . comes closer and closer to satisfying all the tests for 
randomness it begins to exhibit a very rare and unusual type of statistical 
regularity that in some cases even permits the prediction of missing 
portions” [17, pp. 164-1651. 

Linus’s sequence of True’s (0) and Fake’s (1) is nicely compatible with 
Kahneman and Tversky’s [22] conclusion that, up to symbol exchange and 
left-right exchange, there is a single binary sequence of length 6 (01101-O) 
that is “ideally random.” Indeed, Linus’s string (01101-1000-10) exactly 
agrees with Kahneman and Tversky’s in the first five places, an agreement 
also shared with Popper [57], who proposed an algorithm for constructing 
binary strings that start “randomly” and stay “random” throughout (the 
first 11 symbols in Popper’s string are 01101-0111-10).5 

Kahneman and Tversky’s [22] series derives from their representative- 
ness notion, according to which people judge the probability of events by 

4This brings to mind Richard’s paradox: “The smallest number that is undescribable in less 
than twelve words.” 

‘We leave it to the reader to judge how closely these “ideals” match each other-and the 
reader%. The strings were broken into segments to facilitate the comparison. 
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the extent to which they represent the essential characteristics of their 
generating source. People also believe in a “law of small numbers” [44]; 
namely, they expect even small samples to be representative. Combining 
these two yields the simplest and most intuitive account of subjective 
randomness, that of local representativeness. By this account, when asked 
to judge which of a set of sequences is “most random,” people look to see 
which captures the essential features of the random generating device 
best. In the case of a fair coin, say, these features are equiprobability of 
the two outcomes, along with some irregularity in the order of their 
appearance; these are expected to be manifest not only in the long run, 
but even in relatively short segments-as short as six or seven. The flaws 
in people’s judgments of randomness in the large is the price of their 
insistence on its manifestation in the small. 

Local representativeness readily accounts for the main results of the 
judgment tasks, namely, the high alternation rate and the rejection of 
pattern and symmetry. Nonetheless, some investigators have rejected it on 
the grounds that it is inconsistent with some of the production tasks results 
(e.g., the observation of non-uniform distributions in tasks using large 
numbers of alternatives) and because of the weak correlation observed 
between judgment and prediction tasks. 

Clearly, however, production tasks make different cognitive demands 
than judgment tasks. For example, it takes a degree of musicality to hear 
with your inner ear how a piece of piano music should sound, but playing 
it to sound that way calls for technique as well. Thus, it is possible that in a 
judgment task, most subjects would judge the productions of Triesman and 
Faulkner’s subject J (see Fig. 4) as more random than those of subject A 
-including subject A, their producer, himself. 

The Account by Elimination of Alternative Nonrandom Hypotheses 

Diener and Thompson [ll] asked their subjects to guess which of 50 
binary strings of 20 elements had been “produced by a random process 
similar to tossing a fair coin [and which] were generated by some other, 
nonrandom, methods” (pp. 438-439) and later to give their probability 
that each string was generated by a fair coin. The results showed that for 
strings classified as “nonrandom,” reaction time (i.e., the time it took to 
give the response) was shorter the lower the subject’s confidence in the 
string’s randomness, whereas for strings classified as “random,” the reac- 
tion time was on average higher, but no such relationship was found 
between it and the confidence ratings. The authors interpreted their 
results as showing that people compare each sequence to an ordered and 
fixed list of hypotheses which are alternative to randomness. Nonrandom 
agents high in the hierarchy produce both short reaction times (for saying 
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“nonrandom”) and low probabilities (for “random”). Only when all alter- 
natives are eliminated is a judgment of randomness given. The absence of 
a correlation between reaction time and confidence for the strings classi- 
fied as “random” was taken by the authors to disconfirm an account 
relying on direct judgments of representativeness. However, many method- 
ological weaknesses in this study render this conclusion dubious. 

Can People Generate a Single Response “Randomly”? 

Of all the factors that can account for the biases which are unique to 
production tasks, we shall focus on the role played by memory, a purely 
cognitive variable. We shall examine the body of production tasks results 
in light of the following hypothesis: people attempt to produce series that 
will match their subjective notion of randomness (the flaws in which are 
apparent from judgment tasks results), and the extra biases unique to 
production tasks are added by functional limitations on this attempt. 

Memory for previous responses is as difficult to eradicate altogether as 
it is to stretch indefinitely. Non-random productions can be blamed on the 
fact that memory for previous responses is limited, as well as on the fact 
that previous responses are remembered at all. Both accounts uphold that 
productions are guided by a mental image of randomness. According to 
the former, if memory could be stretched indefinitely, people would not 
experience difficulty in keeping a mental tally of previous responses, and 
we would not obtain non-uniform (unrepresentative) distributions.6 Ac- 
cording to the latter, if previous responses were totally lost to memory, 
new ones could hardly be dependent on them, so we would not, for 
example, observe the high alternation rates. Memory operates differently 
on different measures of randomness. 

The issue of previous responses is bypassed when we ask if people can 
produce a single response “at random.” This is hard to test directly, 
because it is not even clear how to instruct people what it is we want them 
to do. However, since lay people often assume that what comes to mind 
first does so at random, or that spontaneity is tantamount to unpredictabil- 
ity, it is worth looking at some of the evidence that demonstrates that 
people’s first, or single, spontaneous responses cannot be treated as 
random. 

In a pertinent study, Kubovy and Psotka [26] asked people to report the 
first digit that came to their mind. The distribution of these digits is far 
from uniform. By far the most popular response is 7, which is typically 
given by almost 30% of respondents. In contrast, 0, 1, 2, and 9 are each 

60ur discussion throughout this paper has assumed that all random variables are uniform, 
which of course they need not be, but everything said can be readily generalized to the 
non-uniform case. 
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given by considerably less than 10% of the respondents. “Why does 7 
appear spontaneous?,” ask the authors, and they reply: “Perhaps it is 
unique among the numbers from 0 to 9 because it has no multiples among 
these numbers, and yet it is itself not a multiple of any of these numbers. 
The numbers fall into groups: 2,4,6,8 form one group; 3,6,9 form 
another. Only 0, 1,5,7 remain. One can rule out 0 and 1 for being 
endpoints, and perhaps 5 for being a traditional midpoint. This leaves us 
with 7 in the unique position of being, as it were, the “oddest” digit [26, 
p. 2941.‘~ 8 

Additional evidence that digits do not come to mind at random can be 
found in Triesman and Faulkner’s [41] results (Fig. 4 above), which 
showed high across-session within-subject correlations between digit fre- 
quencies. 

Categories such as color, furniture, and fruits do not have a natural 
ordering, the way numbers do. For that reason, the determinants of the 
order in which they come to mind are opaque to naive respondents, who 
are therefore more compliant, and exercise less censorship, in reporting 
the first response that comes to their mind. Here again responses are 
highly predictable. When asked to say the first color, or piece of furniture, 
or fruit, that comes to mind, the most likely responses are, respectively, 
red, chair, and apple. These are also the most prototypical members of the 
respective category, as confirmed by other, independent observations [361. 
Moreover, in these categories and others, three to four prototypical 
category members account for 80% or more of the category responses 141. 

A related finding is that about 80% of subjects give “heads” as their first 
response when simulating a coin (e.g., 13, 201). It is hard to argue that 
“heads” is more prototypical than “tails,” so this is more likely a response 
bias reflecting the linguistic convention of preceding “heads” to “tails” in 
expressions such as “heads or tails ?” Finally, Teigen [39] used a prediction 
task, rather than either a judgment or a production task, asking subjects to 
guess the outcome of a lottery where a number between 1 and 12 was 

‘Remember Linus? 
?n this task, people might actually be disobeying the instruction. The first digit that comes 

to their mind may well be the first digit in the natural sequence of numbers. But it is 
censored (1 is the given answer in less than 3% of the cases) as not looking spontaneous 
enough. If so, then the reaction time of subjects responding with a “7” should be on average 
longer than that of subjects responding with a “1,” because a higher proportion of the former 
rather than of the latter would have thought previously of some other digit and censored it. 
In Triesman and Faulkner’s study, the second author, who served as one of the subjects (A, 
in Fig. 41, produced 7 with a frequency significantly lower than expected and lower than that 
given by other subjects, presumably because “This is known to be a favored random 
response.. and is therefore one a sophisticated subject [such as Faulkner] might be wary of 
overproducing” [41, p. 3411. 
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allegedly sampled at random. He too found a nonuniform distribution of 
guesses, with subjects clustering in the center, especially at 7, and avoiding 
the extremes. 

The Role of Memory in Production Tasks 

The previous section suggests that the role of memory in production 
tasks is by and large to assist people in producing sequences that capture 
their subjective notion of randomness. A well known fact about short term 
memory is that its span is 7 k 2 items. This is also the span of immediate 
attention. This “Magical number 7” [31] may account for the size of the 
“windows” within which subjects try to achieve “representative random- 
ness.” 

Subjects who wish to ensure that they are producing alternatives with 
equal frequencies must keep a mental tally of previous responses. For 
large sets of alternatives and long sequences this can be extremely difficult 
(as anyone who has tried to count cards at the blackjack table knows). One 
cognitive solution is to monitor the tally only within the limited segment of 
six or seven previous responses that can be readily remembered. Indeed, 
Wagenaar [49, Chap. 61 reported a cycling tendency (i.e., a tendency to use 
each alternative once in a cycle of A responses, with A being the number 
of alternatives) which peaked for A = 6, and a tendency to match relative 
frequencies within segments of 6-7 items, which was independent of A. 
Cycling was virtually absent for smaller A’s (e.g., A = 2), where local 
representativeness (i.e., frequency matching plus absence of “pattern”) 
can take care of everything. For larger A’s (e.g., the alphabet), where the 
number of alternatives far exceeds the short term memory span, cycling is 
done over smaller subsets of letters at a time. 

The strategies of cycling and matching in “moving windows” of size 6-7 
can account also for some of the effects of the other factors that have been 
studied, factors such as the length of the sequence, the number and nature 
of the symbols, the rate of production, and the presence or absence of 
external aids for retaining previous responses. Unfortunately, only one 
study manipulated these various factors systematically [49]. In that study, 
however, the effects were analyzed in terms of deviations from the mathe- 
matical properties of random variables, not in terms of deviations from the 
subjective notion of randomness, which is what interests us here. Be that 
as it may, the study suggests that factors which strain memory (larger A’s; 
no aids for keeping a record of previous responses) bring about more 
“randomness,” presumably because they interfere with the attempt at 
local tallying and introduce more “noise.” Ironically, since the subjective 
“ideal” of a random sequence is flawed, obstructions to carrying it out 
turn out here to be beneficial. 
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Other factors that have been studied are monotony, age, intelligence, 
mathematical sophistication, speededness, etc. (for a partial review see 
Tune, 1964b). Results, and especially conclusions, are mixed, no doubt 
because memory both aids the task (e.g., making it possible to keep a tally 
of first-order frequencies) and hinders it (making it possible for responses 
to rely on their predecessors). Thus, when writers describe the effects of 
various variables as increasing or decreasing randomness, it depends what 
particular property they are attending to. 

Kubovy and Gilden’s subjects [25, described above] also did their 
“bookkeeping” within windows, whose size varied (4-11-a range that 
slightly exceeds 7 + 2). There were no memory requirements in that task, 
because all previous responses were available on a page, but the “windows” 
may have been necessitated by attention limitations. 

c. WHY? 

The opportunities for observing and experiencing randomness, or at 
least unpredictability, would seem to be myriad (stock market prices, 
newborns’ sexes, accidents occurrences, etc.), and the disadvantages of 
erroneous beliefs are self-evident. Yet in the course of time people either 
acquire an erroneous concept of randomness, or fail to unlearn it. In this 
section, we will try to see what in the nature of our experience, its 
observable properties, and the feedback it confers, might sustain people’s 
erroneous concept of randomness, and why it is not unlearned. We will 
also speculate what advantages, if any, accrue to this biased concept. 

Is it important to have a correct notion of randomness? 

Insofar as being unpredictable is sometimes advantageous (as it demon- 
strably is, say, in various gaming and conflict situations) it would seem 
important to have a correct notion of randomness. Yet since one can use 
external aids to devise unpredictable strategic schemes, one need not rely 
on intuition for that goal. Moreover, though the kind of “unpredictability” 
that people regard as the epitomy of randomness differs systematically 
from the real thing, it does not differ radically from it. For example, a 
subjectively random binary sequence with an alternation rate of 0.6 rather 
than 0.5, can be predicted on average 52% of the time (60% x 60% + 
40% X 40%), as compared to the 50% predictability of perfect chance. To 
have enough power (say, more likely than not) to detect a difference 
between 52% and 50% at customary significance levels (0.05 or less) 
requires large samples indeed-of at least 2500 observations. 
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Another advantage of immediate ability to recognize randomness (or 
unpredictability) is economical, insofar as it saves one the (futile) effort of 
attempting prediction. On the other hand: a. phenomena which yield 
phenotypically “random” observations can nonetheless be “caused” (in 
the commonsensical sense of the term) and, hence, potentially predicted, 
so the effort of seeking to explain or predict them can pay off. The 
distribution of newborns’ sexes is nicely captured by the binomial distribu- 
tion, but this is not to say that a newborn’s sex cannot therefore be 
predicted at better than chance level; b. the ability to make lay predictions 
and causal attributions comes very easily to people. Indeed, people read- 
ily, and spontaneously, engage in attempts to predict-even paradigms of 
randomness, such as coins [19] and roulette wheels [51]. Hence, the 
cognitive gain in obviating such attempts may be paltry. 

The Biased Nature of Feedback 

One reason why experience with random sequences does not teach us 
the true nature of randomness (or, to put it more modestly, the accurate 
statistical properties of random variables) is because once a sequence 
exhibits properties that differ from our internal prototype for randomness, 
we often cease to perceive it as random. Thus, when people encounter 
longer runs in a binary sequence than they expected to “by chance alone,” 
rather than saying to themselves “Aha! Long runs DO occur in random 
sequences,” they say, “Aha! This seems NOT to be a random sequence” 
(recall, for example, the belief in the hot hand’; see also [lo, 
p. 3101). 

The self-fulfilling nature of this biased belief is also apparent in the 
occasionally biased nature of the feedback generated by erroneous judg- 
ments. Consider a decision maker who has made, under conditions of 
uncertainty, a chain of normatively optimal, but practically unsuccessful 
decisions (namely, wise decisions that have turned out badly). The decision 
maker can be a business person, a physician, whatever. Decision making 
under uncertainty is tantamount to gambling, and in gambling there are no 
guarantees of success. Suppose the unfortunate outcomes were just a 
coincidence, namely, were brought about “by chance.” Though the deci- 
sion maker cannot be faulted, her superiors erroneously perceive the long 
run of failures as evidence of incompetence. Unfair as this may sound, to 
the extent that it happens, it alters the nature of the distributions to which 

9A similar phenomenon was noticed by Wagenaar and Keren [51], who showed that casino 
gamblers interpret long sequences of winning (losing) as streaks of good (bad) luck. As a 
consequence gambling acquires a skill aspect: a skillful player is one who recognizes a lucky 
streak when it occurs, exploits it, and can predict when it will end. 
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observers are then exposed: if decision makers are replaced after a bad 
run, they do not get the chance to have their bad run diluted by more 
typical future runs. Thus, their final track record, being based on a 
truncated career, is indeed poorer, on average, than that of a luckier, 
though not better, decision maker who did not have such a bad run. Thus, 
action based on a decision maker’s possibly erroneous judgment generates 
evidence which ultimately confirms the erroneous judgment. 

A different, though related, example of how actions based on erroneous 
judgments generate evidence confirming the judgment is discussed in 
Einhorn and Hogarth [12]. Imagine a waiter who prides himself on the 
ability to tell good from poor tippers at first sight. Having judged some 
customer to be a good tipper, the waiter gives her prompt and friendly 
service. Another customer, judged to be a poor tipper, gets the corner 
table and curt service. Lo and behold-at the end of the meal, the first 
indeed tips more generously than the second (for further examples, see 
[71X 

Arguably, the practice of removing random generators (decision makers, 
roulette wheels, ball players) after a bad run, though it confounds the 
nature of subsequent feedback, might ofttimes be a good idea, because 
truly poor performers are weeded out along with those who were just 
unlucky. While there is a cost to removing a “good” generator because of 
an accident of bad performance, there is also a cost in holding on to a 
“bad” generator who gets the benefit of the doubt.” The point is, that in 
a typical real-life context, a judgment of randomness versus non-random- 
ness is made in the presence of an alternative source for the observed 
event, in a sense similar to Lopes and Odens’ [29] signal detection 
paradigm. Of course, a string of 20 heads could have been generated by a 
fair coin, and indeed, as theoreticians take glee in pointing out, is precisely 
as likely as any other ordered string of outcomes. On the other hand, it is 
even more likely to have been generated by a trick coin or a prankster-so 
much so, that in our kind of world, rejecting the hypothesis of “fair coin” 
on that kind of evidence could be a very sensible thing to do. 

When randomizing is deemed important-for example, in experimental 
design, as when selecting subjects to serve in the treatment versus placebo 
groups of an experiment-the conscientious researcher uses a random 
device. But if the random device just happened, as a fluke occurrence, to 
divide the subjects into groups in a patently unbalanced manner (e.g., all 

“If a roulette wheel in Las Vegas exhibits an unusual run of reds, the House does not wait 
to see if it will stop, but rather the wheel is changed. Wheels are changed more frequently 
than warranted, in the sense that some of the removed wheels are still operating perfectly 
fine (“randomly”); but then again, some are not-and it is too costly to wait until enough 
evidence is in to make a confident assessment. 
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males in the control group, all females in the placebo), few researchers 
would serenely abide by that dictum. “The generation of random numbers 
is too important to be left to chance” (R. R. Coveyou, as quoted by 
Gardner [17, p. 1691). In that sense, even sequences generated artifactually 
in real life by physical random devices end up, due to doctoring, as biased 
representatives of their source. 

Advantages of the Subjective Notion of Randomness 

The perception of events as random or nonrandom is most important 
when it serves as a guide to action in real life. The major bias in the 
subjective notion of randomness is the overpreponderance of alternations 
(or underpreponderance of runs). However, “to evaluate fairly whether 
[this bias is] helpful or harmful over a lifetime. . . , one would have to know 
whether in the world nonrandom events are more often biased towards 
alternation or towards repetition” [28, p. 6331. Although Lopes declined to 
speculate on the answer, Ayton, Hunt, and Wright [l] were bolder. 
“[Pleople’s apparently biased concepts may perhaps be.. . tuned to capi- 
talise on properties of our environment. So, from an ecological viewpoint, 
perhaps repetition of outcomes is actually correctly considered to be more 
likely that alternation in non-random sequences. Or, it may be that the 
utilities associated with non-random events are structured so that it is 
more cost-effective to notice those non-random processes biased towards 
repetition at the expense of missing some of those non-random processes 
that are biased towards alternation” (p. 223, italics there). 

Whereas the mathematical properties of random sequences are typically 
global properties, manifest in the limit of infinitely long runs, local 
representativeness is a local judgment-often the only kind that our 
cognitive apparatus can afford. Since experience, after all, is finite, the 
difference between local representativeness and the actual measures com- 
monly employed by statisticians to test randomness would seem to be 
largely one of degree-local representativeness is a sort of poor man’s 
goodness-of-fit, goodness-of-fit in the (very) small. Yet it is cheap, swift, 
widely applicable, and though slightly biased with respect to the normative 
standard, it “protects” against the gross departures from expectation that 
a fully honest and incorruptible randomizer must on rare occasions con- 
tend with. 
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