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Abstract
A significant body of evidence demonstrates that diets rich in fruit and vegetables promote health,
and attenuate, or delay, the onset of various diseases, including cardiovascular disease (CVD),
diabetes, certain cancers, and several other age-related degenerative disorders. The concept that
moderate chocolate consumption could be part of a healthy diet has gained acceptance in the last
years based on the health benefits ascribed to selected cocoa components. Specifically, cocoa as a
plant and chocolate as food contain a series of chemicals that can interact with cell and tissue
components providing protection against the development and amelioration of pathological
conditions. The most relevant effects of cocoa and chocolate have been related to CVD. The
mechanisms behind these effects are still under investigation. However the maintenance or
restoration of vascular NO production and bioavailability and the antioxidant effects are the
mechanisms most consistently supported by experimental data. This review will summarize the most
recent research on the cardiovascular effects of cocoa flavanoles and related compounds.
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CARDIOVASCULAR DISEASE AND DIET
CVD, including stroke, is the leading cause of death and disability in developed countries.
Atherosclerosis, vascular dysfunction, platelet aggregation, and other inflammation-associated
conditions are central to CVD. Diet is a major factor contributing to the onset and development
of CVD, by primarily affecting all the above mentioned conditions. Nevertheless, high intake
of calories and certain fats increase the risk for CVD1, diet also provides micronutrients that
appear fundamental in controlling CVD2. Defining specific modifications of dietary habits in
a population can have a major impact on CVD, especially during the long period in which the
disease is silent3. To set new goals to improve human diets, it is important to understand how
macro and micronutrients can interact with biological systems to enhance health.

CARDIOVASCULAR DISEASE AND COCOA
Robust epidemiological evidence demonstrates that diets rich in fruits and vegetables promote
health, and attenuate, or delay the onset of CVD3–6 (and references therein). The questions
that remain open are: i) are all fruits and vegetables equivalent? if not, can we identify those
with best health benefits?; and ii) how can we recognize the compounds responsible for such
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effects? A pioneer population study showed an inverse association between flavonoid
consumption and the risk of coronary heart disease7. Under this paradigm cocoa and chocolate
have been intensively studied in the last years mostly driven by the large content of flavanols
and related compounds in cocoa beans that are generally conserved in the commercially
available chocolate.

High cocoa and chocolate consumption have been associated with a decreased risk for CVD
in a few population studies. A sub-study of a population from the Zutphen Elderly Study
showed that cocoa consumption was associated with a decrease in blood pressure and overall
cardiovascular mortality8. A case-control study done in Italy showed that the risk for
myocardial infarction was inversely associated to chocolate consumption, reaching a 77%
decrease in risk when comparing the population that ate more than three portions of chocolate
per day with the population that consumed less than one9. Several dietary intervention studies
in humans and animals demonstrated that cocoa10–18 and other flavanol-rich foods/
beverages19–21 may exert protective vascular effects.

Although data for the above mentioned population and clinical studies show a similar trend
suggesting flavanols as cardioprotective agents, the biochemical mechanisms behind that
cardioprotection are not conclusively identified. Based on a number of in vitro studies, it has
been speculated that biochemical mechanisms contributing to the health effects of flavanols
include: antioxidant effects22; modulation of cell signaling and gene expression23–24; and
alterations of certain cell membrane properties and receptor functions25–26. In addition to the
above mentioned mechanisms, flavanols can inhibit several enzyme activities27–30. These
mechanisms are not necessary independent, and then could occur concurrently or
synergistically, as will be discussed in the following sections.

CHEMICAL STRUCTURE OF COCOA FLAVANOLS AND PROCYANIDINS
Polyphenols occur as plant secondary metabolites. Their ubiquitous occurrence in plants and
plant foods, favors animal consumption and indeed human and animal tissue presence.
Flavonoids are a chemically defined family of polyphenols that includes several thousand
compounds. The flavonoids have a basic structure (Fig. 1), and several subclasses of flavonoids
are characterized by a substitution pattern in the B- and C-rings. The main subclasses include
flavanols, flavanones, flavones, isoflavones, flavonols, and anthocyanidins31. Flavanols are
compounds present in high concentrations not only in cocoa, but also in grapes, apples,
pomegranates, tea among other widely consumed fruits and vegetables. In cocoa and cocoa
products, flavanols are present as: i) monomers, i. e. (−)-epicatechin (EC) and (+)-catechin
(CT); and ii) oligomers of EC (procyanidins)32. EC (and CT) oligomers are denominated
procyanidins, condensed tannins, or proanthocyanidins. Different plants present a particular
pattern of monomers and oligomerization derivatives, e.g. cocoa procyanidins are mostly of
the denominated B-type, e.g. B2-dimer (Fig. 1); while in tea (Camellia sinensis) predominate
the gallolyated catechins.

BIOAVAILABILITY AND METABOLISM OF COCOA FLAVANOLS AND
PROCYANIDINS

When discussing the biological activity of flavonoids in general, and flavanols in particular,
four are the major factors to be considered: i) bioavailability from foods; ii) absorption and
metabolism at the gastrointestinal tract; iii) tissue and cellular distribution after absorption; and
iv) which are the chemical form(s) biologically available to the cell/tissue and their potential
metabolism at cellular level. As indicated above, flavanols are present as monomers or forming
procyanidins. Although it was initially thought that the procyanidins could not pass the acidic
conditions of the stomach33, data from human subjects show that flavanols and procyanidins
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are stable during gastric transit34–35. Once in the mesenteric circulation, flavanols
predominately exist in a conjugated form, both as methylated and glucuronidated
flavanols36–38. In the liver, further glucuronidation and methylation can take place, as well as
sulfation36–38. Metabolic studies have confirmed the presence of these conjugates in the plasma
and urine of rodents and humans38–41, as well as in the bile38 and brain of rats42. It has been
reported that colonic microflora can break flavonoids flavan structure to form simple phenolics
and ring-fission metabolites that may be physiologically relevant43–44. In summary, non-
metabolized flavanols or metabolites of flavanols can exert biological effects depending
essentially on flavanol metabolism and presence in the target tissue28–30.

In humans, plasma concentrations of EC plus EC-metabolites can be found in the micromolar
range as soon as 1 h after cocoa consumption12, 39, 45, with the major metabolite being 4’-o-
methyl-epicatechin-7-β-D-glucuronide12. There is some evidence that certain flavanols are
better absorbed than others. After human subjects consumed a cocoa beverage containing EC
and CT in a 1:1 ratio, peak plasma CT concentrations were typically less than 10% of EC (0.16
vs. 5.92 µM)45. Part of these differences in plasma flavanol concentrations, could be due to
procyanidin degradation; for example, dimers has been shown to form EC and methylated EC
under certain conditions41, 46–47, although the physiological relevance of such degradation
remains to be confirmed.

While several research groups have examined the bioavailability of the monomeric flavanols,
there is limited information on the bioavailability and metabolism of procyanidins. B2-dimer
has been detected in the plasma of humans and rats41, 45, 49; B5-dimer (EC-(4β-6)-EC) has
been detected in very minute quantities in simulated gastric and intestinal juice47; and no other
type of dimer has been detected in rats50. It is important to note that the dimers that have been
detected in the plasma are those made up of EC, not of CT subunits. A chemical explanation
for these discrepancies is the different hydroxyl group orientation in the C3 position of the
flavonoid B ring, which affects the interaction between the 3-OH on the C ring and the B ring
resulting in dissimilar biological actions51–52.

COCOA FLAVANOLS AS ANTIOXIDANTS: FREE RADICAL SCAVENGERS
AND METAL CHELATORS

Plant polyphenols has been considered for long as physiologically relevant antioxidants based
on the facts that: i) polyphenols have chemical structures favoring antioxidant actions, i.e. free
radical scavenging and chelation of redox-active metals; ii) many polyphenols retain key
features of their structure after ingestion and metabolism by mammals; and iii) certain
polyphenols can provide physiological benefits in pathological situations associated with high
free radical production, e. g. hypertension. Flavanols shared these properties, as confirmed by
the extensive literature demonstrating that flavanols have free radical scavenging activity in a
myriad of biochemical and ex vivo systems23, 25, 26, 53–61, and also in animal models and in
humans62–64. In theory, these antioxidant actions can result in a reduction of the steady state
concentration of free radicals and other oxidants, diminishing the subsequent oxidation of
target molecules such as lipids, proteins and nucleic acids. However, one important limitation
for the “antioxidant action” hypothesis resides in the relatively low flavanol and procyanidin
plasma concentrations observed even after the consumption of foods rich in these
compounds45, 65. The actual concentrations that can be reached in plasma of humans subjected
to realistic polyphenol consumption are in the nanomolar range and are transient in nature
(peaking at 2–4 h)12, 45. This low bioavailability leads to a kinetically unfavourable condition
with respect to other compounds with similar free radical scavenger capabilities, that are
present in blood in significantly higher micromolar concentrations i.e. tocopherols and
ascorbate. Thus, a function of flavanols as direct free radical scavengers is unlikely to be
relevant, and could be limited to the blood and other tissues directly exposed after consumption,
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i.e. gastrointestinal tract. It has been suggested that other mechanisms, compatible with the
physiological levels reached by flavanols, may explain the observed changes in cell or tissue
oxidation levels after flavanol consumption. These mechanisms are beyond the ability of
flavanols and other flavonoids to directly prevent free radical-mediated tissue damage65–66.

Another relevant detrimental effect of oxidants is the reaction of nitric oxide (NO) with
superoxide to form peroxynitrite67. This reaction, that occur in a near diffusion controlled rate,
and is important at the vascular level, leads to two undesirable conditions: i) reduction of NO
availability necessary for proper smooth muscle cell function in vessel relaxation; and ii)
increased formation of peroxynitrite that will promote oxidative and nitrosative damage (Fig.
2). NO production in mammalian cells is catalyzed by the enzyme nitric oxide synthase, which
activity is by four isoforms, i.e. endothelial (eNOS) expressed mostly in endothelial cells;
neuronal (nNOS) present mainly in neurons; inducible (iNOS) expressed in response a variety
of proinflammatory stimuli; and mitochondrial (mtNOS) present in the inner membrane of the
mitochondrion68–69. In the vascular environment, superoxide is not only originated by the
mitochondria respiratory chain70–71, xanthine oxidase, and cytochrome P45072–73, but by
other two enzymes: a non phagocytic NADPH oxidase74 and an uncoupled endothelial
NOS75. Then, flavanols and procyanidins present in circulation or in the vasculature can
improve NO vascular concentration by interfering with the reaction between NO and
superoxide by: i) inhibiting NADPH oxidase-dependent superoxide production 30; ii)
optimizing NO generation by NOS76; and/or iii) scavenging superoxide, H2O2, and other
oxidants that mediate damage to cell components with superoxide and other oxidants77; and
iv) modifying membrane-related events leading to changes in NO and superoxide production.

COCOA FLAVANOLS AS ANTIOXIDANTS: PROTEIN AND LIPID
INTERACTIONS

Flavanols and procyanidins have multiple phenolic hydroxyl groups (Fig. 1) that favour their
interaction with biological membranes which can occur via the formation of hydrogen bonds.
Furthermore, the presence of both, hydrophobic and hydrophilic residues within the flavanol
molecule, allows these compounds to interact with phospholipid head groups and be adsorbed
onto the surface of membranes. These interactions can result in changes in a number of
membrane properties leading to alterations in the regulation of membrane associated molecules
and events, including, enzymes, receptors, and other functional proteins receptors78–80.

Some enzymes affected by cocoa consumptions are directly associated with CVD and oxidant
m e tabolism, such as 5-lipoxygenase81–82, cyclooxygenase-283–84, and
metalloproteinases85. The interactions of flavanols and proteins can also lead to changes in the
modulation of gene expression. A direct interaction between nucleic acids and flavanols is
thermodynamically feasible86, but the possibility that these compounds reach the DNA and
achieve mechanistically-relevant concentrations is rather low. The modulation of signaling
pathways by flavanols has been extensively studied87–89. More specifically, the effects of
flavanols and procyanidins on the oxidant-regulated NF-kB activation pathway have received
special attention. In Jurkat T cells, we demonstrated that EC and CT, and B2-dimer inhibited
phorbol mirystate acetate (PMA)-induced IL-2 production, and interfere with several steps of
the NF-κB activation cascade23. Essentially, since monomers and dimers (and their
metabolites) can be transported into the cells they can act by: i) attenuating intracellular
oxidants associated with select stimuli, and the subsequent activation of NF-κB (antioxidant
effect); and/or ii) interacting with specific proteins, resulting in the inhibition of the
phosphorylation and/or degradation of the inhibitory protein IκBα, the transport of active NF-
κB from the cytosol into the nucleus, and/or the binding of NF-κB to κB DNA23, 90. Large
procyanidins (with 3 or more units), that are mostly affecting cells from outside, modulate NF-
κB activation by modulating the binding of the ligand (stimuli) to its receptor, as we observed
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in Caco-2 cells exposed to tumor necrosis factor alpha91. Another example of flavanols
interaction with membranes is the finding that EC, B2-dimer and C1-trimer modulate
intracellular calcium in Jurkat T cells92.

COCOA, LIPID METABOLISM, AND ATHEROSCLEROSIS
Alterations in plasma cholesterol concentration, especially increased levels of LDL-
cholesterol, and decreased levels of HDL-cholesterol are associated to the development of
atherosclerosis93–94 and CVD1. Reductions in LDL-cholesterol plasma levels have been
reported after treatments with polyphenols from different sources95–98. Regarding the action
of cocoa, mild hypercholesterolemic subjects lowered significantly (~5%) their LDL
cholesterol level after 4 weeks of a dietary intervention with cocoa powder (81–163 mg/day
of EC+CT)99. Even in normocholesterolemic young subjects a 15% reduction was observed
in LDL-cholesterol level after 14 days of a daily consumption of 105 g of flavanol-containing
milk chocolate (168 mg of flavanols)100. Patients with essential hypertension showed 11% of
decrease in LDL cholesterol after 15 days receiving 100 g/day dark chocolate (88 mg of
flavonols)10. Under an equivalent protocol a similar result was observed in glucose-intolerant
hypertensive patients (−7.5%)101. Although the above studies did not investigate potential
mechanisms, other works have proposed that LDL-cholesterol decrease associated to
flavanoids consumption from different sources include: i) inhibition of cholesterol absorption
in the digestive tract96; ii) inhibition of LDL biosynthesis in the liver98; iii) suppression of the
hepatic secretion of apolipoprotein B10095; and/or iv) increased expression of LDL receptors
in the liver97. All these mechanisms should be the result of interactions between flavanols and
membranes, as whole structures, or with particular lipids or proteins. An increase in HDL-
cholesterol has been demonstrated in normo and mildly hypercholesterolemic subjects after
dark chocolate or cocoa powder supplementation99, 102–103. The mechanisms responsible for
these effects on HDL concentrations remain unclear.

It is accepted that oxidized LDL has a role in the development of atherosclerosis104. Numerous
studies in animals and humans showed that isolated LDLs are more resistant to in vitro
oxidation after the consumption of cocoa products57, 102, 105–109. One study showed a decrease
in plasma levels of oxidized LDL plasma levels after dietary cocoa powder
supplementation99. All these studies suggest a role for cocoa components in the in vivo
protection of LDL. These effects have been mostly ascribed to the scavenging of oxidants
formed in the surface of the LDL, and to the chelation of metals catalyst of free radical
formation; but they could also be the result of changes in the LDL surface rendering LDL less
susceptible to oxidation.

COCOA, ENDOTHELIAL FUNCTION AND HYPERTENSION
The regulation of the vascular tone is the result of a complex network of molecules that includes
catecholamines, vasoactive peptides (angiotensin-II or vasopressin), prostaglandins, and
importantly, NO. Consumption of a high flavanol cocoa drink (providing 176–185 mg) by
patients with cardiovascular risk factors, increased the bioavailability of NO, and an augmented
flow-mediated vasodilation, effects that were reversed by the infusion of a NO synthesis
inhibitor13–15. Studies with isolated flavonoids showed that EC was able to reproduce the
vascular effects observed with cocoa products, suggesting that this flavanol should be
responsible for the vascular effects12.

Observational and epidemiological studies indicate that diets rich in polyphenols decrease
blood pressure and prevent the increase in blood pressure associated to several pathologies.
For years, red wine was considered to have beneficial effects on cardiovascular health, a
relationship supported by the French Paradox110. Cocoa and cocoa derived products have
gained attention because their potential antihypertensive effects. A sub-study of the Zutphen
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population showed that cocoa consumption was associated with a decrease in blood
pressure8. In addition, an association between the intake of cocoa and a low incidence of
hypertension was observed in an indigenous population living on the Kuna Islands111. The
Kuna Indians of Panama have a very low incidence of hypertension and cardiovascular disease,
but when members of this tribe moved to urban places, their blood pressure was increased. The
relocation led to cultural changes and to a decrease in the consumption of cocoa, suggesting
that this dietary change was responsible of the observed changes in blood pressure. These
results were complemented by other studies that showed an enhancement of endothelial
function including acute positive effects on flow mediated dilation by cocoa consumption in
humans12–13, 15–17.

Consistent with the association between cocoa consumption and low incidence of hypertension
are the results from several short term clinical studies showing that the intake of certain
chocolates can decrease blood pressure in humans10–11, 100, 112–113. Grassi et al. studied 15
healthy young adults with typical Italian diets isocalorically supplemented daily with daily 100
g dark chocolate or 90 g white chocolate (assuming 500 and 0 mg of polyphenols, respectively).
They observed that the dark chocolate supplement was associated with decreased systolic blood
pressure, whereas the white chocolate had no effect112. Results were extended to essential
hypertensive patients10 and more recently to glucose-intolerant hypertensive patients101. We
studied the effects of the regular consumption of a flavanol-containing milk chocolate on blood
pressure and on oxidative stress parameters in healthy young soccer-players100. The
consumption of the flavanol-containing milk chocolate was significantly associated with a
decrease in blood pressure, and an amelioration of oxidative stress. Taubert et al. studied the
effects of low doses of polyphenol-rich dark chocolate in humans during 18 weeks11. Dark
chocolate intake reduced mean, systolic, and diastolic blood pressure and oxidative stress.
Blood pressure decrease was accompanied by a sustained increase of S-nitrosoglutathione,
suggesting an improve formation of NO. The above studies provide support for the involvement
of oxidative stress in the vascular tone regulation by NO availability. A meta-analysis of 5
studies relating cocoa consumption with decreases in blood pressure confirmed the individual
results114. Significantly, the reductions in systolic (4.7 mm Hg) and diastolic (2.8 mm Hg)
blood pressure associated to cocoa and chocolate consumption were similar to those obtained
with antihypertensive drugs114. In another study, a dark chocolate and a sugar-free cocoa drink
were effective in improving endothelial function and decreasing blood pressure in overweight
adults115. In accordance with all these results, several studies have shown significant decreases
in blood pressure following the consumption of other flavanol-containing beverages such as
wine19, 110, 116 and tea117–120. On the other hand, one study showed that the administration
of 900 mg of flavanoles per day during two weeks enhanced insulin-mediated vasodilation but
did not modify blood pressure in patients with essential hypertension. These authors concluded
that the treatment was not long enough121.

COCOA, PLATELET ACTIVATION AND THROMBOSIS
Platelet activation is a central event in coagulation, but it is also related to the acute development
of thrombosis and to the long term CVD pathogenesis. A thrombi release from an unstable
atherosclerotic plaque is very often the first clinical manifestation of a myocardial ischemia or
infarction or stroke122–123. Regarding the effects of cocoa on platelet function, Rein et al.
administered a cocoa beverage (~897 mg of total EC and oligomeric procyanidins) or placebo
to healthy subjects. Blood obtained 2 h after was stimulated with epinephrine and ADP.
Platelets present in those samples were studied by the detection of activated conformation of
the fibrinogen-binding receptor GPIIb-IIIa and the expression of CD62P (associated with
platelet activation). Both parameters were significantly reduced in cocoa-treated individuals.
Cocoa also inhibited coagulation, by reducing the formation of hemostatically active platelet
microparticles, and increasing platelet-related hemostasis time124. In another study, platelet
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function was evaluated in smokers 2 h after receiving 40 g of dark chocolate (~47 mg of EC
+CT)125. Platelet adherence as a result of a shear stress that mimics severely stenotic or
disrupted plaques was significantly reduced (−5%) in association with dark chocolate
supplementation. Using a similar assay in a protocol including heart transplant recipients, it
was also found a reduction in platelet adherence126. Both studies propose that the antioxidant
properties of cocoa flavanols can lead to an increase in NO bioavailability, which would be
associated to the decrease in platelet reactivity, given the potent action of NO as platelet
inhibitor127. In isolated platelets it was shown that a mixture of CT and quercetin can cause a
similar effect increasing NO levels through the inhibition of protein kinase C-dependent
NADPH oxidase128. Other mechanisms for the effects of flavonoids on platelet reactivity that
may be associated with a NO availability because the inhibition of oxidant production include:
i) a the reduction in phospholipase C activity associated to hydrogen peroxide production129;
ii) the modulation of eicosanoide metabolism130; iii) the blockade of platelets TxA2
receptors131; and iv) the inhibition of platelet lipooxygenase132–133.

COCOA AND INFLAMMATION
There is increasing evidence that inflammation is pivotal in the induction and perpetuation of
CVD. A participation of dietary flavonoids in the modulation of inflammation would contribute
to reduce cardiovascular risk. An inverse association was observed between dietary flavonoid
intake and serum C-reactive protein (CRP), that is both a biomarker for chronic inflammation
and a sensitive risk factor for CVD134. Moreover, data from the NHANES 1999–2002 has
shown an inverse association between particular flavonols, i.e. quercetin and kaempferol and
C-reactive protein. A significant association between inflammation and moderate consumption
of cocoa products was found in a study comparing subjects that ate chocolate regularly in the
form of dark chocolate (n = 824) with subjects that did not eat chocolate for at least one year
(n = 1,317). Serum C-reactive protein concentration in the subgroup having up to one serving
(20 g of cocoa) every 3 days was significantly lower than in both, non consumers and subjects
having higher consumption135. The possible mechanisms involved in the anti-inflammatory
effects of cocoa products have been lately revised136–137. Of interest, are cell experiments
showing the inhibition of MAPK kinase activities by cocoa procyanidins138–139, and cocoa
extracts140.

CONCLUDING REMARKS
A full range of health benefits can today be associated to the actions of flavanols and
procyanidins on vascular function. These benefits are mainly ascribed to diets rich in flavanols
and procyanidins, and chocolate and cocoa derivatives are among the most valuable
components of such a diet. Considering the fact that CVD is associated with a series of
conditions that can trigger oxidant production and oxidant-regulated cell signaling, it would
be logical to relate the free radical scavenging and metal chelating properties of cocoa flavanols
to CVD protective effects. However, other biochemical mechanisms related to specific
flavanol-lipid and flavanol-protein interactions can partially explain the observed in vitro and
in vivo antioxidant effects. These mechanisms are more consistent with the in vivo flavanol
and procyanidins levels observed in most human and animal tissues.
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Abbreviations

CT (+)-catechin

EC (−)-epicatechin

CVD cardiovascular disease
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Fig. 1.
Chemical structure of flavanols and procyanidins. B2-dimer is a characteristic cocoa
procyanidin formed by two (−)-epicatechin units linked by 4→8 bonds.

Galleano et al. Page 15

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Scheme relating flavanols (circles) with NO and superoxide (O2 −) metabolism in endothelial
cells. Flavanols could act by: i) inhibiting NADPH oxidase-dependent superoxide production,
ii) activating eNOS; iii) scavenging superoxide, H2O2, and other oxidants that mediate damage
to cell components; and iv) modifying membrane-related events leading to changes in NO and
superoxide production. NO generated in endothelial cells will diffuse outside the cell and reach
smooth muscle cells where it will induce vascular relaxation.
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