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Abstract— A genetic algorithm for solving Sudoku using a 

wisdom of crowds heuristic is presented. This paper compares 

the performance of a genetic algorithm for solving Sudoku 

puzzles against a genetic algorithm which makes use of the 

wisdom of crowds heuristic. The idea behind the wisdom of 

crowds heuristic is that multiple people working together can 

produce a better solution than they would working separately. In 

this implementation that means that with each generation, we 

choose a certain percentage of the fittest individuals from the 

population and deem them experts (they’re the best of what 

population has to offer). The solutions from these experts are 

then combined in a way that offers up one solution that is an 

aggregation of their solutions (one which often has a better fitness 

than any of the individual expert solutions that went into making 

it). 
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I.  INTRODUCTION 

Genetic algorithms are algorithms that attempt to mimic the 
concept of natural selection found in nature [1]. The algorithm 
treats possible solutions to a problem as chromosomes in a 
genetic pool. Chromosome pairs will be mixed and matched 
(and mutated), and of those, the most fit will see their offspring 
make it to the next generation; while the most unfit will not (on 
average). The benefits of genetic algorithms are that they 
provide close estimations, or exact solutions, to intractable 
problems. They are topic agnostic, in the sense that the 
underlying architecture can easily be altered for various 
problem types, and the algorithm requires very little in the way 
of specifics about a problem space [2-3]. 

Sudoku is a puzzle game that has become incredibly 
popular within the last decade. There are entire books of 
Sudoku puzzles, and many newspapers feature a Sudoku puzzle 
in their puzzles section. Like many of the best games and 
puzzles, Sudoku is easy to learn, but hard to master. It has been 
calculated that there are 6,670,903,752,021,072,936,960 valid 
potential starting boards (for a 9x9 board) [4], so we are in no 
danger of running out anytime soon. 

The starting state is an n
2
xn

2
 (most commonly 9x9 – 3

2
x3

2
) 

board where some values have been placed (we say they are 
“given”), and the rest of the values are blank. 

 

Figure 1: Sample starting state of a Sudoku board [5]. 

  

The object of Sudoku is to fill out each puzzle in such a 
way that the following three criteria are met: 

1. Each row contains each of the integers 1 through 9 
exactly once. 

2. Each column contains each of the integers 1 through 9 

exactly once. 

3. Each 3x3 sub-grid (outlined by the double lines 

above) contains each of the integers 1 through 9 

exactly once [6]. 

Typically, Sudoku starting states are designed so that they 
produce only one solution [7]. Figure 2 shows the solution for 
the initial board example shown in Figure 1. 

 

Figure 2: Solution of the sample Sudoku board shown in Figure 1 [5]. 

  



For easier boards, logic and a process of elimination are 
typically enough to solve the puzzle. For some of the harder 
boards, an element of guess and check often comes into play. 

Though Sudoku is most commonly played on a 9x9 board, 
it can actually be played on any n

2
xn

2
 board [8]. Solving an 

n
2
xn

2
 Sudoku puzzle is an NP-Complete problem [9]. An NP-

Complete problem is a problem whose time complexity 
increases very quickly (exponentially) in relation to the 
problem size, but if given a solution, it can be checked for 
correctness efficiently [10]. Since solving arbitrarily large 
boards can quickly become intractable, this paper proposes that 
a genetic algorithm approach be taken to solving Sudoku. The 
belief is that the use of a genetic algorithm in combination with 
the wisdom of crowds heuristic can stand a good chance of 
solving many Sudoku puzzles. 

The idea behind the wisdom of crowds is that multiple 
people (chromosomes) working together can produce a better 
solution than they would working separately. In this 
implementation that means that with each generation, we 
choose a certain percentage of the fittest individuals from the 
population and deem them experts (they’re the best of what our 
population has to offer). We then take this group of experts and 
combine their solutions in a way that offers up one solution that 
is an aggregation of their solutions (and one which often has a 
better fitness than any of the individual expert solutions that 
went into making it). 

II. OVERVIEW OF PROPOSED ALGORITHM 

A. Initialization 

The algorithm creates an initial population by reading the 
input file containing the given positions and placing those 
given positions into every board in the population. It then 
randomly generates values, on a row by row basis for each 
board, such that each row is a valid (non-repeating) 
permutation. 

B. Fitness 

A fitness function is a crucial aspect of a genetic algorithm 
because it is what defines the worth of each chromosome [11]. 
For a Sudoku board, the fitness is a reflection of the number of 
conflicts in the board. A conflict is defined as a value missing 
from a row, column, or sub-grid (can also be defined as 
anytime there is a duplicate value in a row, column, or sub-
grid). The more conflicts a board has, the worse its fitness. 

The various chromosomes (boards) in a generation were put 
into ascending order, and the fitness score was given as (total 
population of the generation - i), where i started at 0, and went 
up to the total population of the generation – 1. 

C. Selection 

For this algorithm, a roulette wheel selection process was 
chosen. A roulette wheel allows us to select parents 
(chromosomes) for mating based on a probability, where the 
better scoring chromosomes have a higher chance of being 
selected [12]. As an example, let’s say we have 5 chromosomes 
with fitness scores of 1, 2, 3, 4, and 5. The total fitness of the 

generation is 15 (1+2+3+4+5). The chromosome with a score 
of 5 is given a 5/15 chance of being selected, the chromosome 
with a score of 4 is given a 4/15 chance of being selected, etc. 
We select two parents for the creation of each child and use the 
roulette wheel to weight the randomization in favor of the more 
fit chromosomes. 

D. Crossover 

A crossover function takes aspects from each parent and 
uses them to create a child [13]. In this implementation, the 
algorithm chooses between two crossover functions (with a 
50% chance of choosing each). Both of the functions use rows 
as the crossover information, which allows for the permutations 
in each row to hold (even when merging two parents to make a 
child). 

The first of these crossover functions randomly chooses a 
parent (from the two parents chosen in the selection process) 
and takes the first row from the chosen parent and places it in 
the child. It then randomly chooses one of the parents and takes 
the second row from the chosen parent, etc. Figure 3 shows an 
example crossover of this type, where the lines indicate which 
parent provided the row to the child. 

 

Figure 3: One-row crossover. 

 

This crossover function works well at preserving the row 
information while allowing for a large variety in the possible 
children two parents could make. However, we stand a high 
chance of losing any valued information we may have gathered 
in the sub-grids. 

The second crossover function acts similarly to the first, except 
this function views three row segments as the smallest value 
that can be passed on from parent to child. This allows sub-grid 
retention from boards that provided valuable (low-conflict) 
sub-grids. 

 

Figure 4: Three-row crossover. 

 

This test data shown in Figure 4 was taken from an early 
generation, but as more generations are run and the boards have 
a better average fitness, the ability to preserve sub-grid 
information becomes more valuable. The goal of having these 
two crossover functions is that the one-row crossover will 
provide variation, but as a run goes on, the three-row crossover 
will aid in preserving low conflict sub-grids. 



E. Mutation 

A mutation randomly alters part of a child’s chromosome. 
The chance of mutation is based on the mutation rate; so if the 
mutation rate is 5%, then there is a 5 in 100 chance that the 
child in question will be chosen to be mutated (on average). 
Mutation is an incredibly valuable part of any genetic 
algorithm, but it seems to be of even greater importance when 
attempting to solve Sudoku puzzles using genetic algorithms. 
The reason for the heightened importance is that the crossover 
function allows for variations of rows (which allows for varied 
columns and sub-grids), but it does not provide variation within 
the rows themselves. Mutations are critical, as they are what 
continually provide variety in the rows [14]. 

The mutation method that seemed to work best was one in 
which a randomly selected row was randomly re-sorted (with 
the exception of the given values, those are never changed). 
This seemed to provide a large amount of variety, by both 
randomizing the entire row and performing the mutation on a 
random row each time. 

F. Wisdom of Crowds 

The purpose of the wisdom of crowds heuristic is to 
aggregate the best solutions from each generation to try and 
make an even better solution [15]. Through trial and error the 
value of 5% was decided on as the percentage of each 
population, with the best fitness, to be considered experts. 
There is a balance that needs to be fine-tuned for each problem 
type attempted when implementing the wisdom of crowds 
heuristic. If the percentage of experts is too low then the 
aggregation function will not get enough input to be valuable, 
but make the percentage too high and the results will be 
watered down, and possibly compromised by poor solutions. 

The algorithm to combine the expert solutions into one 
solution consists of three steps. For the sake of explanation, 
row 1 is used as an example (but this algorithm is run for all 
rows in the board, and the process is repeated for each 
generation): 

Step 1: To create an aggregated solution, the first step is to 
determine what the various expert solutions have in common. 
To do this, we take the pool of experts and create a list that 
contains the row permutations the experts used for row 1. From 
that, the count for how many times each row permutation was 
used is determined. A high count for a row permutation means 
that many experts all have the same row permutation for row 1. 

Step 2: Determine which row-permutation was used the 
most frequently for row 1 and place that row in the aggregated 
solution as row 1. 

Step 3: Sometimes the experts won’t agree on a row 
permutation. When this happens, we generate a random row 
and insert that into the aggregated solution. 

This approach was chosen over breaking down the board 
into individual cells and counting the frequency of the values in 
each cell because there is a high chance that with that approach 
we would end up with heavily duplicated rows, which we want 
to avoid. 

G. Stopping Criteria 

The stopping criteria for this algorithm are when a solution 
has been found, or when the current generation’s conflict count 
is equal to, or worse than, the conflict count from 249 
generations ago. On average, the algorithm takes only 87.81 
generations to either solve the Sudoku puzzle, or to reach a low 
conflict count from which it is unlikely to improve (local 
minima). The check for generations without progress is set to 
249 because that provided plenty of clearance over the average 
number of generations required, while also encompassing 
many of the statistical outliers. 

Often times when performing test runs of the algorithm the 
process would get stuck at some low conflict count but be 
unable to get itself out of the groove and continue improving. 
To help alleviate this issue a shake-up function was 
implemented. The goal of the shake-up function is to try and 
get the algorithm out of local minima. If the algorithm hasn’t 
made progress for 124 generations we “shake-up” the 
population by completely replacing the poorest performing half 
of the population with randomized boards. 

III. RESULTS 

A. Test Data 

Sudoku puzzles are often divided into the difficulty 
categories of very easy, easy, medium, hard, and very hard 
(which roughly correlate to how many values are “given”). 
Five boards were used in the testing and analysis of the 
algorithm, one from each difficulty level. 

 

Figure 5: Very easy difficulty Sudoku board used for testing (36  givens). 

 

 

Figure 6: Easy difficulty Sudoku board used for testing (34 givens) [16]. 
 



 

 

Figure 7: Medium difficulty Sudoku board used for testing (30 givens). 
 

 

Figure 8: Hard difficulty Sudoku board used for testing (19 givens) [17]. 
 

 

Figure 9: Very hard difficulty Sudoku board used for testing (17 givens) [18]. 
 

 

Figure 10 shows the input board for the very easy solution, 
along with the solution provided by the algorithm. 

 

Figure 10: Very easy difficulty Sudoku board and the solution provided by the 

algorithm (“given” values are shown in red in the solution). 

 

B. Genetic Algorithm vs. Genetic Algorithm using the 

Wisdom of Crowds Heuristic 

All runs performed used the following parameters: 

Population: 5,000 

Mutation rate: 40% 

Expert percentage: 5% 

Values averaged over 10 runs 

Genetic Algorithm will be referred from this point on as GA 
and Genetic Algorithm using the Wisdom of Crowds heuristic 
may be referred to as GA+WoC. 

As illustrated in Figure 11, the GA and GA+WoC were fairly 
even when it came to the average number of conflicts left on 
the board when a run would end. The GA+WoC performed 
slightly better, with an overall average of 3.78, compared to the 
3.82 for the GA. 

 

Figure 11: Graph comparing number of conflicts by board difficulty for GA 

and GA+WoC. 

 

The GA was marginally faster than the GA+WoC, with an 
overall average of 131.34 seconds, compared to 139.34 seconds 
for the GA+WoC.  

 



 

 

Figure 12: Graph comparing runtime by board difficulty for GA and 

GA+WoC. 
 

GA and GA+WoC were fairly even when it came to the 
average number of generations needed on the easy, hard, and 
very hard boards. However, GA+WoC was significantly more 
efficient when attempting to solve the very easy board, and GA 
was moderately more efficient when attempting to solve the 
medium board. Overall, GA+WoC was slightly more efficient, 
averaging 252.04 generations compared to GA’s 262.26. 

 

Figure 13: Graph comparing number of generations taken by board difficulty 

for GA and GA+WoC. 
 

Figure 14 depicts the performance of the wisdom of crowds 
heuristic while solving the very easy Sudoku puzzle (averaged 
over 10 runs as well). As can be seen, the wisdom of crowd’s 
aggregate solution always performed better than the overall 
expert average. The aggregate provided a better solution than 
the best expert for roughly half of the generations. The best 
expert solution performs better toward the end of the run, 
presumably because the aggregate has a smaller window for 
improvement. It should be stated that the aggregate solution 
appears to always improve; it is simply that the best expert 
improves more quickly toward the end of the run.  

 

 

 

 

 

Figure 14: Graph showing the performance of the wisdom of crowds heuristic 
 

Overall, the GA+WoC averaged .348 conflicts less per 
generation than the best expert solution. The GA+WoC 
provided a solution that was, on average, 4.2% better than the 
best expert solution. 

IV. CONCLUSIONS 

An algorithm was presented that can reliably solve very 
easy and easy Sudoku boards, can occasionally solve medium 
difficulty boards, and comes very close to solving hard and 
very hard boards. It has been shown that making use of the 
wisdom of crowds heuristic when using genetic algorithms will 
typically result in a similar quality solution to a regular genetic 
algorithm, but will do so in fewer generations (at the cost of a 
slightly higher runtime).  

Table 1: Overall performance of GA and GA+WoC in three areas 

 Average 

conflict 

count 

Average 

runtime 

Average 

generations 

needed 

GA 3.82 131.34 264.26 

GA+WoC 3.78 139.34 252.04 

 

Future work will consist of improving the algorithm so that 
it does a better job in overcoming local maxima points and of 
increasing number of puzzles in each testing level to increase 
statistical significance of the achieved results. Even on the very 
hard problems the algorithm managed to average less than 8 
conflicts, which would seem to suggest that the core logic in 
the algorithm is sound, it just needs more fine-tuning. The 
‘Shake-Up’ functionality is a good start and can be improved 
upon. Future work should also focus on improving the speed of 
the wisdom of crowds heuristic so that the GA+WoC 
implementation averages a better runtime to go along with the 
lower average number of generations needed. 

The core issue of this algorithm might lead one to question 
the usefulness of genetic algorithms for solving Sudoku. Such 
questioning definitely has merit. Genetic algorithms seem best 
suited for situations where finding a near-optimal solution is 
sufficient. In Sudoku, however, there is typically only one 
solution per board, and a near-optimal final board state is not 
worth anything; it is still an invalid solution. Sudoku solving 



algorithms seem to fair better when they view Sudoku as a 
constraint satisfaction problem [19]. Sudoku can easily be 
viewed as a constraint satisfaction problem with four 
constraints: 

1. Given values cannot be altered 

2. Each row has to be a permutation of the values 1 
through 9 

3. Each column has to be a permutation of the values 
1 through 9 

4. Each sub-grid has to be a permutation of the 
values 1 through 9 [20] 

Despite these difficulties, the algorithm presented in this 
paper provides a solid framework for improvement and is well 
within reach of being able to reliably solve very hard Sudoku 
puzzles. The data presented here clearly shows the benefit of 
using the wisdom of crowds heuristic when solving Sudoku 
puzzles with a genetic algorithm. As stated in the introduction, 
genetic algorithms are topic agnostic, in the sense that the 
underlying architecture can be easily altered for various 
problem types, and the algorithm requires very little in the way 
of specifics about a problem space. This suggests that the 
performance boost obtained from the Wisdom of Crowds 
heuristic can be expected in implementations of this algorithm 
on other problem types [21]. Some promising results have 
already been demonstrated with respect to other puzzles such 
as Light Up [22] and Mastermind [23]. 
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