
Solving Sudoku Puzzles with

Wisdom of Artificial Crowds

Ryan Hughes

Speed School of Engineering

University of Louisville

Louisville, USA

rmhugh03@louisville.edu

Roman V. Yampolskiy

Speed School of Engineering

University of Louisville

Louisville, USA

roman.yampolskiy@louisville.edu

Abstract— A genetic algorithm for solving Sudoku using a

wisdom of crowds heuristic is presented. This paper compares

the performance of a genetic algorithm for solving Sudoku

puzzles against a genetic algorithm which makes use of the

wisdom of crowds heuristic. The idea behind the wisdom of

crowds heuristic is that multiple people working together can

produce a better solution than they would working separately. In

this implementation that means that with each generation, we

choose a certain percentage of the fittest individuals from the

population and deem them experts (they’re the best of what

population has to offer). The solutions from these experts are

then combined in a way that offers up one solution that is an

aggregation of their solutions (one which often has a better fitness

than any of the individual expert solutions that went into making

it).

Keywords- Wisdom of Artificial Crowds; Sudoku

I. INTRODUCTION

Genetic algorithms are algorithms that attempt to mimic the
concept of natural selection found in nature [1]. The algorithm
treats possible solutions to a problem as chromosomes in a
genetic pool. Chromosome pairs will be mixed and matched
(and mutated), and of those, the most fit will see their offspring
make it to the next generation; while the most unfit will not (on
average). The benefits of genetic algorithms are that they
provide close estimations, or exact solutions, to intractable
problems. They are topic agnostic, in the sense that the
underlying architecture can easily be altered for various
problem types, and the algorithm requires very little in the way
of specifics about a problem space [2-3].

Sudoku is a puzzle game that has become incredibly
popular within the last decade. There are entire books of
Sudoku puzzles, and many newspapers feature a Sudoku puzzle
in their puzzles section. Like many of the best games and
puzzles, Sudoku is easy to learn, but hard to master. It has been
calculated that there are 6,670,903,752,021,072,936,960 valid
potential starting boards (for a 9x9 board) [4], so we are in no
danger of running out anytime soon.

The starting state is an n
2
xn

2
 (most commonly 9x9 – 3

2
x3

2
)

board where some values have been placed (we say they are
“given”), and the rest of the values are blank.

Figure 1: Sample starting state of a Sudoku board [5].

The object of Sudoku is to fill out each puzzle in such a
way that the following three criteria are met:

1. Each row contains each of the integers 1 through 9
exactly once.

2. Each column contains each of the integers 1 through 9

exactly once.

3. Each 3x3 sub-grid (outlined by the double lines

above) contains each of the integers 1 through 9

exactly once [6].

Typically, Sudoku starting states are designed so that they
produce only one solution [7]. Figure 2 shows the solution for
the initial board example shown in Figure 1.

Figure 2: Solution of the sample Sudoku board shown in Figure 1 [5].

For easier boards, logic and a process of elimination are
typically enough to solve the puzzle. For some of the harder
boards, an element of guess and check often comes into play.

Though Sudoku is most commonly played on a 9x9 board,
it can actually be played on any n

2
xn

2
 board [8]. Solving an

n
2
xn

2
 Sudoku puzzle is an NP-Complete problem [9]. An NP-

Complete problem is a problem whose time complexity
increases very quickly (exponentially) in relation to the
problem size, but if given a solution, it can be checked for
correctness efficiently [10]. Since solving arbitrarily large
boards can quickly become intractable, this paper proposes that
a genetic algorithm approach be taken to solving Sudoku. The
belief is that the use of a genetic algorithm in combination with
the wisdom of crowds heuristic can stand a good chance of
solving many Sudoku puzzles.

The idea behind the wisdom of crowds is that multiple
people (chromosomes) working together can produce a better
solution than they would working separately. In this
implementation that means that with each generation, we
choose a certain percentage of the fittest individuals from the
population and deem them experts (they’re the best of what our
population has to offer). We then take this group of experts and
combine their solutions in a way that offers up one solution that
is an aggregation of their solutions (and one which often has a
better fitness than any of the individual expert solutions that
went into making it).

II. OVERVIEW OF PROPOSED ALGORITHM

A. Initialization

The algorithm creates an initial population by reading the
input file containing the given positions and placing those
given positions into every board in the population. It then
randomly generates values, on a row by row basis for each
board, such that each row is a valid (non-repeating)
permutation.

B. Fitness

A fitness function is a crucial aspect of a genetic algorithm
because it is what defines the worth of each chromosome [11].
For a Sudoku board, the fitness is a reflection of the number of
conflicts in the board. A conflict is defined as a value missing
from a row, column, or sub-grid (can also be defined as
anytime there is a duplicate value in a row, column, or sub-
grid). The more conflicts a board has, the worse its fitness.

The various chromosomes (boards) in a generation were put
into ascending order, and the fitness score was given as (total
population of the generation - i), where i started at 0, and went
up to the total population of the generation – 1.

C. Selection

For this algorithm, a roulette wheel selection process was
chosen. A roulette wheel allows us to select parents
(chromosomes) for mating based on a probability, where the
better scoring chromosomes have a higher chance of being
selected [12]. As an example, let’s say we have 5 chromosomes
with fitness scores of 1, 2, 3, 4, and 5. The total fitness of the

generation is 15 (1+2+3+4+5). The chromosome with a score
of 5 is given a 5/15 chance of being selected, the chromosome
with a score of 4 is given a 4/15 chance of being selected, etc.
We select two parents for the creation of each child and use the
roulette wheel to weight the randomization in favor of the more
fit chromosomes.

D. Crossover

A crossover function takes aspects from each parent and
uses them to create a child [13]. In this implementation, the
algorithm chooses between two crossover functions (with a
50% chance of choosing each). Both of the functions use rows
as the crossover information, which allows for the permutations
in each row to hold (even when merging two parents to make a
child).

The first of these crossover functions randomly chooses a
parent (from the two parents chosen in the selection process)
and takes the first row from the chosen parent and places it in
the child. It then randomly chooses one of the parents and takes
the second row from the chosen parent, etc. Figure 3 shows an
example crossover of this type, where the lines indicate which
parent provided the row to the child.

Figure 3: One-row crossover.

This crossover function works well at preserving the row
information while allowing for a large variety in the possible
children two parents could make. However, we stand a high
chance of losing any valued information we may have gathered
in the sub-grids.

The second crossover function acts similarly to the first, except
this function views three row segments as the smallest value
that can be passed on from parent to child. This allows sub-grid
retention from boards that provided valuable (low-conflict)
sub-grids.

Figure 4: Three-row crossover.

This test data shown in Figure 4 was taken from an early
generation, but as more generations are run and the boards have
a better average fitness, the ability to preserve sub-grid
information becomes more valuable. The goal of having these
two crossover functions is that the one-row crossover will
provide variation, but as a run goes on, the three-row crossover
will aid in preserving low conflict sub-grids.

E. Mutation

A mutation randomly alters part of a child’s chromosome.
The chance of mutation is based on the mutation rate; so if the
mutation rate is 5%, then there is a 5 in 100 chance that the
child in question will be chosen to be mutated (on average).
Mutation is an incredibly valuable part of any genetic
algorithm, but it seems to be of even greater importance when
attempting to solve Sudoku puzzles using genetic algorithms.
The reason for the heightened importance is that the crossover
function allows for variations of rows (which allows for varied
columns and sub-grids), but it does not provide variation within
the rows themselves. Mutations are critical, as they are what
continually provide variety in the rows [14].

The mutation method that seemed to work best was one in
which a randomly selected row was randomly re-sorted (with
the exception of the given values, those are never changed).
This seemed to provide a large amount of variety, by both
randomizing the entire row and performing the mutation on a
random row each time.

F. Wisdom of Crowds

The purpose of the wisdom of crowds heuristic is to
aggregate the best solutions from each generation to try and
make an even better solution [15]. Through trial and error the
value of 5% was decided on as the percentage of each
population, with the best fitness, to be considered experts.
There is a balance that needs to be fine-tuned for each problem
type attempted when implementing the wisdom of crowds
heuristic. If the percentage of experts is too low then the
aggregation function will not get enough input to be valuable,
but make the percentage too high and the results will be
watered down, and possibly compromised by poor solutions.

The algorithm to combine the expert solutions into one
solution consists of three steps. For the sake of explanation,
row 1 is used as an example (but this algorithm is run for all
rows in the board, and the process is repeated for each
generation):

Step 1: To create an aggregated solution, the first step is to
determine what the various expert solutions have in common.
To do this, we take the pool of experts and create a list that
contains the row permutations the experts used for row 1. From
that, the count for how many times each row permutation was
used is determined. A high count for a row permutation means
that many experts all have the same row permutation for row 1.

Step 2: Determine which row-permutation was used the
most frequently for row 1 and place that row in the aggregated
solution as row 1.

Step 3: Sometimes the experts won’t agree on a row
permutation. When this happens, we generate a random row
and insert that into the aggregated solution.

This approach was chosen over breaking down the board
into individual cells and counting the frequency of the values in
each cell because there is a high chance that with that approach
we would end up with heavily duplicated rows, which we want
to avoid.

G. Stopping Criteria

The stopping criteria for this algorithm are when a solution
has been found, or when the current generation’s conflict count
is equal to, or worse than, the conflict count from 249
generations ago. On average, the algorithm takes only 87.81
generations to either solve the Sudoku puzzle, or to reach a low
conflict count from which it is unlikely to improve (local
minima). The check for generations without progress is set to
249 because that provided plenty of clearance over the average
number of generations required, while also encompassing
many of the statistical outliers.

Often times when performing test runs of the algorithm the
process would get stuck at some low conflict count but be
unable to get itself out of the groove and continue improving.
To help alleviate this issue a shake-up function was
implemented. The goal of the shake-up function is to try and
get the algorithm out of local minima. If the algorithm hasn’t
made progress for 124 generations we “shake-up” the
population by completely replacing the poorest performing half
of the population with randomized boards.

III. RESULTS

A. Test Data

Sudoku puzzles are often divided into the difficulty
categories of very easy, easy, medium, hard, and very hard
(which roughly correlate to how many values are “given”).
Five boards were used in the testing and analysis of the
algorithm, one from each difficulty level.

Figure 5: Very easy difficulty Sudoku board used for testing (36 givens).

Figure 6: Easy difficulty Sudoku board used for testing (34 givens) [16].

Figure 7: Medium difficulty Sudoku board used for testing (30 givens).

Figure 8: Hard difficulty Sudoku board used for testing (19 givens) [17].

Figure 9: Very hard difficulty Sudoku board used for testing (17 givens) [18].

Figure 10 shows the input board for the very easy solution,
along with the solution provided by the algorithm.

Figure 10: Very easy difficulty Sudoku board and the solution provided by the

algorithm (“given” values are shown in red in the solution).

B. Genetic Algorithm vs. Genetic Algorithm using the

Wisdom of Crowds Heuristic

All runs performed used the following parameters:

Population: 5,000

Mutation rate: 40%

Expert percentage: 5%

Values averaged over 10 runs

Genetic Algorithm will be referred from this point on as GA
and Genetic Algorithm using the Wisdom of Crowds heuristic
may be referred to as GA+WoC.

As illustrated in Figure 11, the GA and GA+WoC were fairly
even when it came to the average number of conflicts left on
the board when a run would end. The GA+WoC performed
slightly better, with an overall average of 3.78, compared to the
3.82 for the GA.

Figure 11: Graph comparing number of conflicts by board difficulty for GA

and GA+WoC.

The GA was marginally faster than the GA+WoC, with an
overall average of 131.34 seconds, compared to 139.34 seconds
for the GA+WoC.

Figure 12: Graph comparing runtime by board difficulty for GA and

GA+WoC.

GA and GA+WoC were fairly even when it came to the
average number of generations needed on the easy, hard, and
very hard boards. However, GA+WoC was significantly more
efficient when attempting to solve the very easy board, and GA
was moderately more efficient when attempting to solve the
medium board. Overall, GA+WoC was slightly more efficient,
averaging 252.04 generations compared to GA’s 262.26.

Figure 13: Graph comparing number of generations taken by board difficulty

for GA and GA+WoC.

Figure 14 depicts the performance of the wisdom of crowds
heuristic while solving the very easy Sudoku puzzle (averaged
over 10 runs as well). As can be seen, the wisdom of crowd’s
aggregate solution always performed better than the overall
expert average. The aggregate provided a better solution than
the best expert for roughly half of the generations. The best
expert solution performs better toward the end of the run,
presumably because the aggregate has a smaller window for
improvement. It should be stated that the aggregate solution
appears to always improve; it is simply that the best expert
improves more quickly toward the end of the run.

Figure 14: Graph showing the performance of the wisdom of crowds heuristic

Overall, the GA+WoC averaged .348 conflicts less per
generation than the best expert solution. The GA+WoC
provided a solution that was, on average, 4.2% better than the
best expert solution.

IV. CONCLUSIONS

An algorithm was presented that can reliably solve very
easy and easy Sudoku boards, can occasionally solve medium
difficulty boards, and comes very close to solving hard and
very hard boards. It has been shown that making use of the
wisdom of crowds heuristic when using genetic algorithms will
typically result in a similar quality solution to a regular genetic
algorithm, but will do so in fewer generations (at the cost of a
slightly higher runtime).

Table 1: Overall performance of GA and GA+WoC in three areas

 Average

conflict

count

Average

runtime

Average

generations

needed

GA 3.82 131.34 264.26

GA+WoC 3.78 139.34 252.04

Future work will consist of improving the algorithm so that
it does a better job in overcoming local maxima points and of
increasing number of puzzles in each testing level to increase
statistical significance of the achieved results. Even on the very
hard problems the algorithm managed to average less than 8
conflicts, which would seem to suggest that the core logic in
the algorithm is sound, it just needs more fine-tuning. The
‘Shake-Up’ functionality is a good start and can be improved
upon. Future work should also focus on improving the speed of
the wisdom of crowds heuristic so that the GA+WoC
implementation averages a better runtime to go along with the
lower average number of generations needed.

The core issue of this algorithm might lead one to question
the usefulness of genetic algorithms for solving Sudoku. Such
questioning definitely has merit. Genetic algorithms seem best
suited for situations where finding a near-optimal solution is
sufficient. In Sudoku, however, there is typically only one
solution per board, and a near-optimal final board state is not
worth anything; it is still an invalid solution. Sudoku solving

algorithms seem to fair better when they view Sudoku as a
constraint satisfaction problem [19]. Sudoku can easily be
viewed as a constraint satisfaction problem with four
constraints:

1. Given values cannot be altered

2. Each row has to be a permutation of the values 1
through 9

3. Each column has to be a permutation of the values
1 through 9

4. Each sub-grid has to be a permutation of the
values 1 through 9 [20]

Despite these difficulties, the algorithm presented in this
paper provides a solid framework for improvement and is well
within reach of being able to reliably solve very hard Sudoku
puzzles. The data presented here clearly shows the benefit of
using the wisdom of crowds heuristic when solving Sudoku
puzzles with a genetic algorithm. As stated in the introduction,
genetic algorithms are topic agnostic, in the sense that the
underlying architecture can be easily altered for various
problem types, and the algorithm requires very little in the way
of specifics about a problem space. This suggests that the
performance boost obtained from the Wisdom of Crowds
heuristic can be expected in implementations of this algorithm
on other problem types [21]. Some promising results have
already been demonstrated with respect to other puzzles such
as Light Up [22] and Mastermind [23].

REFERENCES

[1] C. Darwin, “The origin of species by means of natural selection: or, the
preservation of favored races in the struggle for life”, Ed. William F.
Bynum. AL Burt, 2009.

[2] H. Sengoku and I. Yoshihara, “A Fast TSP Solver using GA on Java”,
3rd International Symposium on Artificial Life and Robotics (AROB-
III), pp. 283–288, 1997.

[3] K. De Jong, “Learning with genetic algorithms: An overview”, Machine
learning 3.2, p. 121-138, 1988.

[4] K. Das, S. Bhatia, S. Puri, and K. Deep, “A Retrievable GA for Solving
Sudoku Puzzles”, Technical Report, Department of Mathematics, IIT
Roorkee, May 2008.
http://www.cse.psu.edu/~sub194/papers/sudokuTechReport.pdf.

[5] C. Chang, Z. Fan, and Y. Sun, “A Difficulty Metric and Puzzle
Generator for Sudoku”, The UMAP Journal, Vol. 29, no. 3, p. 305-326,
2008.

[6] M. Perez and T. Marwala, “Stochastic Optimization Approaches for
Solving Sudoku”, arxiv.org/pdf/0805.0697, May 6, 2008.

[7] L. Taalman, “Taking Sudoku Seriously”, Math Horizons 15.1, p. 5-9,
2007.

[8] G. Kendall, A. Parkes, and K. Spoerer, “A survey of NP-complete
puzzles”, International Computer Games Association Journal 31, no. 1,
p. 13-34, 2008.

[9] T. Yato and T. Seta, “Complexity and Completeness of Finding Another
Solution and Its Application to Puzzles”, IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
Vol. 86, No. 5, p. 1052–1060, 2003.

[10] L. Fortnow, “The Status of the P versus NP Problem”, Communications
of the ACM, Vol. 52, p. 78-86, September 2009.

[11] T. Mantere and J. Koljonen. “Sudoku solving with cultural swarms”, AI
and Machine Consciousness, 2008.
www.stes.fi/step2008/proceedings/step2008proceedings.pdf#page=60

[12] C. Reeves, “Handbook of Metaheuristics”, International Series in
Operations Research & Management Science, Vol. 57, p. 55-82, 2003.

[13] T. Mantere and J. Koljonen, “Solving and Rating Sudoku Puzzles with
Genetic Algorithms”, Publications of the Finnish Artificial Intelligence
Society, Vol. 12, no. 23, p. 86-92, October 26-27, 2006.

[14] D. Waters, “SudoKube: Using Genetic Algorithms to Simultaneously
Solve Multiple Combinatorial Problems”, MS Thesis, Oklahoma State
University, 2007.
http://dc.library.okstate.edu/utils/getfile/collection/theses/id/3203/filena
me/3204.pdf

[15] R. Yampolskiy, L. Ashby and L. Hassan, “Wisdom of Artificial
Crowds—A Metaheuristic Algorithm for Optimization”, Journal of
Intelligent Learning Systems and Applications, Vol. 4 No. 2, 2012, p.
98-107. doi: 10.4236/jilsa.2012.42009.

[16] M. Ercsey-Ravasz and Z. Toroczkai, “The Chaos Within Sudoku”,
Scientific Reports, Vol. 2, no. 725, October 11, 2012.

[17] T. Weber, “A SAT-based sudoku solver”, In Geoff Sutcliffe and Andrei
Voronkov, editors, LPAR-12, p. 11–15, December 2005.

[18] I. Lynce and J. Ouaknine, “Sudoku as a SAT problem”, In proceedings
of the 9th Symposium on Artificial Intelligence and Mathematics,
January 2006.

[19] P. Norvig, “Solving Every Sudoku Puzzle”,
http://norvig.com/sudoku.html

[20] A. Moraglio, J. Togelius, and S. M. Lucas, “Product Geometric
Crossover for the Sudoku Puzzle”, 2006 IEEE Congress on Evolutionary
Computation (CEC2006), 470-476, Vancouver, BC, Canada, July 16-
21, 2006.

[21] R. V. Yampolskiy and A. El-Barkouky, Wisdom of Artificial Crowds
Algorithm for Solving NP-Hard Problems, International Journal of Bio-
Inspired Computation (IJBIC), 3(6) (2011), pp. 358-369.

[22] L. H. Ashby and R. V. Yampolskiy, Genetic Algorithm and Wisdom of
Artificial Crowds Algorithm Applied to Light Up, 16th International
Conference on Computer Games: AI, Animation, Mobile, Interactive
Multimedia, Educational & Serious Games, Louisville, KY, USA July
27 - 30, 2011, pp. 27-32.

[23] A. B. Khalifa and R. V. Yampolskiy, GA with Wisdom of Artificial
Crowds for Solving Mastermind Satisfiability Problem, International
Journal of Intelligent Games & Simulation (IJIGS), 6(2), December
2011.

View publication statsView publication stats

http://www.cse.psu.edu/~sub194/papers/sudokuTechReport.pdf
http://www.stes.fi/step2008/proceedings/step2008proceedings.pdf#page=60
http://dc.library.okstate.edu/utils/getfile/collection/theses/id/3203/filename/3204.pdf
http://dc.library.okstate.edu/utils/getfile/collection/theses/id/3203/filename/3204.pdf
https://www.researchgate.net/publication/256169416

