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ABSTRACT 
In his book The Wisdom of the Crowd James Surowiecki reveals that, in the past, some groups 

made excellent decisions while other groups failed miserably at decision making via a large 

amount of examples. He explains that a group can make wise decisions collectively if certain 

requirements are met. He calls collective wise decisions ‘wisdom of the crowd’. 

In his paper Making the Difference: Applying a Logic of Diversity Scott Page uses the Diversity 

Prediction Theorem  to mathematically explain that, by increasing the diversity, the crowd’s 

opinion becomes more accurate compared to its average individual members. 

To mathematically validate James Surowiecki’s  reasoning, an experiment was conducted among 

a crowd of 119 high school students, who fit the requirements for a crowd to be collectively 

wise. In the experiment the Prediction Diversity Theorem was used to decide if the crowd’s 

opinion was significantly more accurate than the opinion of its average individual members. The 

theorem compares the crowd’s opinion to that of its individual members, and in this experiment 

a reference crowd was used to validate that the crowd’s opinion is not only accurate compared 

to its average individual members, but also has real-life value. 

This thesis will provide evidence that wisdom of the crowd occurs when asking a crowd of 119 

high school students to predict the outcome of the 2014 FIFA World Cup soccer group-stage 

games in Brazil. It will also show that, if you separate the crowd into a high and low knowledge 

group, the high knowledge group has a lower individual error on average, while the low 

knowledge group has a higher prediction diversity. These two findings combined show that the 

crowd’s opinion of the low and high knowledge group do not differ significantly. Lastly, this the-

sis will show that the opinion of this crowd does not significantly differ from the predictions of a 

betting website, showing that the opinion of the crowd has real-life value. 
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INTRODUCTION 

For the past 25 years, I have gone to camping site ”Chateau du Montrouant” in France to spend 

my summer holidays. As I am not the only person who has this habit of returning, I meet the 

same people there each year. Among these people is a group of five girls spending their holiday 

together. What fascinates me is that, when, on almost any given day, I talk with these five girls 

separately, they have  a clear picture of what they want to do: hang out at the pool, play tennis, 

go sightseeing; as long as they can do what they want individually without burdening the others, 

it is fine. The part that fascinates me is that, the moment they have to decide what to do as a 

group, they set their individual preferences aside, and make a decision that clearly not a single 

one of the individual members of the group is happy with. How five rational individuals can 

make such terrible group decisions is beyond me. 

In his book The Wisdom of the Crowd  James Surowiecki wrote that, if a crowd meets the re-

quirements of diversity, independence, decentralization, and aggregation, it is most likely capa-

ble of collectively making wise decisions. Other crowds that do not meet said requirements are 

not capable of collectively making wise decisions. In this thesis an experiment is conducted to 

test if a crowd of 119 high school students that meets these requirements could be considered 

wise compared to its average individual members. The crowd is also split in a high and low 

knowledge group to see if knowledge is related to the accuracy of the predictions, and to see if 

there is a relationship between knowledge and the diversity between the groups. Finally, a ref-

erence crowd is used to verify if the crowd of high school students has predictive value. 

The thesis is separated into three parts. The first part consists of background information on 

wisdom of the crowd, with chapters considering the requirements that need to be met for a 

crowd to become wise, and three types of problems that can be solved by using wisdom of the 

crowd. The second part consists of information on the reference crowd, the betting website, and 

the mathematical explanation behind the wisdom of the crowd: the prediction diversity theo-

rem. The third and final part consists of the experiment and its results, with chapters concerning 

the hypothesis, the experiment, the data analysis, results, conclusion, and discussion and limita-

tions of the research.  
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WISDOM OF THE CROWD 

Surowiecki starts his book The Wisdom of the Crowd with the famous example of Francis Galton 

and the country fair. Francis Galton was a 85-year-old scientist, who wanted to prove that 

crowds were -of all things- certainly not wise. At a country fair in 1906,a crowd consisting of 

experts, such as farmers and butcher, and non-experts, such as curious bystanders, was asked to 

predict the weight of an ox. 800 people participated, and Galton used these predictions to pro-

vide evidence that the crowd holds no knowledge. He stated that ‘’the average competitor was 

probably as well fitted for making a just estimate of the dressed weight of the ox, as an average 

voter is of judging the merits of most political issues on which he votes’’ (Galton, 1907). As this 

quote suggests, Galton believed that the power should not be in hands of the public, but in the 

hands of a select few, and he wanted to use the results of this experiment to strengthen his opin-

ion. The results of the experiment proved exactly the opposite: the crowd’s prediction, which 

was equal to the average prediction of its participants, was 1,197 pounds while the ox weighted 

1,198. The crowd’s prediction was more accurate than any of its individual members. 

We can attribute this finding to luck, since, when you ask enough crowds to predict the weight of 

an ox, there will be crowd that gets it right. It could be that the lucky crowd was exactly the 

crowd Galton encountered. However, since then a lot of experiments have been conducted on 

this phenomenon, and came up with the same conclusion. If certain requirements are met, 

crowds can be very intelligent, and often even more intelligent than its individual members. We 

call this phenomenon ‘wisdom of the crowd’. 

Not all groups are wise, and there is an endless amount of examples where groups made very 

poor decisions. Said groups are not limited to those consisting of non-experts, as especially 

groups of experts can make very poor decisions.  The Bay of Pigs Invasion, which was a special-

ized attack on Cuba, constructed by a group of men known for their knowledge and expertise on 

the subject, exemplifies this notion very well. However, the invasion failed miserably, and, when 

reflected upon the decisions made, its failure was contributed to a phenomenon called Group-

think. This is a phenomenon where people in groups come to an answer based on consensus, 

and try to avoid disagreement (Janis, 1972).In everyday life we encounter a lot of groupthink, 

especially when the subject the decision is based on holds little value. Think about questions as 

what to eat for dinner, or what movie to watch. We do not mind the choice that is made as long 

as we avoid disagreement. When groups make decisions based on groupthink, we will not find 

wisdom of the crowd within these groups. In the Bay of Pigs Invasion all members agreed that, 

when the invasion was spotted, the Cubans would be too late to adjust to it. By agreeing with 
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each other and avoiding disagreement, they stopped looking at the plan critically, assuming that, 

if something was wrong with the plan, they as a group of experts would have noticed it.  

So if not all groups are wise, what requirements must be met for a group to become wise, and 

what problems can a wise group help solve? There are four requirements or conditions that 

must be met before wisdom of the crowd occurs: diversity (each individual member has some 

private information), independence (individual opinions are not determined by the opinions of 

those around them), decentralization (people are able to specialize and draw on local 

knowledge), and aggregation (a way to transform the individual opinions to a collective opin-

ion). Wisdom of the crowd can help to solve three types of problems: cognition problems (prob-

lems with definitive solutions, who wins this tennis match, how many beans are in this jar), co-

ordination problems (people try to coordinate their behavior on a certain matter knowing other 

people will do the same), and cooperation problems (how can self-interested people work to-

gether) (Surowiecki, 2004). Each condition and problem will be discussed in its own chapter. 
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DIVERSITY 

In the context of wisdom of the crowd, we defined diversity as individual members having some 

private information, on which they base their decision. To put this in the context of crowds, a 

diverse crowd consists of people having different information and different opinions.  

The importance of diversity can be explained through a random episode of almost any police 

series. To solve any crime, the police uses forensic evidence and motives of the suspects. While 

forensic evidence always points towards suspect A, the motive will point towards suspect B. In 

the end, by combining both the forensic evidence and motive, the police finds out the perpetra-

tor is suspect C. What we take from this is that limited information does not paint a full picture. 

The more pieces of information we gather, the clearer the picture becomes. When we look back 

at the Bay of Pigs-example, the group of experts had only a part of all total available information, 

and, since they all had the same information, they had no reason to believe the conclusion they 

had drawn based upon their information was incorrect. By increasing the diversity of the group, 

we add information to the group that can be used to come up with a better  solution. 

The more diverse the crowd, the more private information is added that can be used to create a 

solution. As Surowiecki states: a person’s guess consists of two components, namely knowledge 

and error. When you ask a large group of diverse people to make a certain prediction and aver-

age those predictions, the errors will cancel each other and you will be left with the knowledge 

part (Surowiecki, 2004). Diversity decreases the error. From this we can derive that diversity on 

its own is not sufficient. If we ask a diverse group that lacks knowledge to make a certain esti-

mate, we might get a more accurate answers than we would get from the individual members of 

the group, since we cancel the errors, the answer itself might not be accurate at all as it lacks the 

knowledge part. For clarification, consider the following example:  

We fill a jar with 100 beans and ask three participants to estimate the amount of beans in the jar. 

All 3 participants estimate the amount of beans to be 100. The average individual error is 0, 

since all participants have no error, and (0+0+0)/3=0. The crowd’s opinion is equal to the aver-

age estimate, which is (100+100+100)/3=100, where the crowd’s error is equal to 0, since 100-

100=0. Say two more people participate, and participant 4 estimates 90 beans, while participant 

5 estimates 110 beans. As we can see, the crowd became more diverse. The average individual 

error became 4, since (0+0+0+10+10)/5=4. This is because the last two participants have an 

error of 10, as the absolute difference between their prediction and the outcome is 10. The 

crowd’s prediction remains 100, since (100+100+100+90+110)/5=100, and the crowd’s error 

remains 0. As we can see, the crowd’s opinion is now smarter than that of its individual mem-

bers, since the average individual error is higher than the crowd’s error. However, diversity did 
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not make the crowd on its own smarter, since the average individual error became 4 after the 

diversification, while it previously was 0. To conclude, making the crowd more diverse makes 

the crowd’s opinion more accurate than that of its individual members. However, a more diverse 

crowd does not necessarily have a lower error . 

To showcase the importance of diversity in a more economic setting, we looked at research on 

diversity within top management teams. It showed that diversity will avoid consensus and cre-

ate debate, which will enhance company performance (Simons, 1999). 

In everyday economics diversity plays a vital part. When we look at the early days of the United 

States car industry, or any other industry for that matter, you will see a business climate with a 

very large amount of alternatives. For example, in the case of the car industry, there are  elec-

tronic cars, gasoline powered cars, and steam powered cars. From all these alternatives, the suc-

cessful ones will be used, while the unsuccessful alternatives disappear. Only by showing as 

much alternatives as possible we can determine which of them are successful, and which of them 

are not.  As showed, diversity adds a lot of solutions and information. If the group can determine 

the value of all the  provided solutions and information, it will show that diversity is vital for 

good decision making.  (Surowiecki, 2004). In the chapter: Mathematical Explanation of Wisdom 

of the Crowd the exact mathematical value of diversity will be explained by using the diversity 

prediction theorem. 

In this thesis research will be done on whether or not wisdom of the crowd occurs within a 

group of high school students predicting the outcomes of the 2014 FIFA World Cup in Brazil. 

Within this group of high school students sub-groups were created based on the knowledge of 

the subject, namely soccer. Interesting for research is the value of diversity and knowledge be-

tween the high and low information groups. As previously explained, each guess or prediction is 

based on knowledge and error. From this we assume that the high information group will have 

more knowledge, but also a higher error due to lower diversity, while the low information group 

will have less knowledge, but a lower error due to a higher diversity. It will be interesting to see 

if the value added by diversity will be lower or higher than the value expertise/knowledge will 

add.  
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INDEPENDENCE 

In the context of wisdom of the crowd, independence has been defined as the individual opinions 

of the members of a crowd, which are not determined by the opinions of other members of said 

crowd. Wisdom of the crowd suggests that, if a crowd is wise, it might be smart to follow the 

crowd’s opinion. Thus is seems like wisdom of the crowd and independence are contradictive, as 

independence suggests that individual opinions should not be determined by opinions of others, 

and wisdom of the crowd suggest that following the opinion of the crowd can be wise.  

The following example explores this idea of wisdom of the crowd and independence being con-

tradictive. There are two restaurants: restaurant A, which is filled with people dining, and res-

taurant B, where no people are dining. A person who knows nothing of either of the restaurants 

is asked to choose to dine in one of both restaurants, He or she chooses restaurant A, using the 

logic that the restaurant where most people are dining is the better restaurant. If all people cur-

rently eating in both restaurants each individually chose the restaurant based on which restau-

rant they believe is better, or to put it differently: if the individual opinions of the people are not 

determined by the opinions of other people dining, then the crowd would suggest that the res-

taurant with most people dining is the better restaurant, and it indeed can be wise to follow the 

crowd. In this case the crowd itself was independent, so the opinion of the crowd is based on an 

independent crowd and should be a wise opinion (assuming it does not lack diversity, decentral-

ization or aggregation).  

If the same example of the two restaurants is looked at, now knowing that, not only the person 

we previously asked to pick a place to eat used the logic that the restaurant with most customers 

better restaurant, but all other people who are currently dining also used this same logic. Now it 

can be determined that this crowd lacks independence, since the individual members of this 

crowd did not determine their opinion on their own, but used the opinions of the people who 

chose before them to determine where to eat. Only the first person who chose between the two 

empty restaurants made an independent decision. However, a crowd of one person clearly lacks 

diversity, and it could be wise not to follow it. To summarize, for a crowd to be independent it 

needs a decent amount of its members to make a decision not based on opinions of others.  

It can be hard to determine whether an opinion is independent or not. Humans are social crea-

tures, and take into account not only their own needs, but also the needs of others. As 

Surowiecki stated “the more influence we exert on each other, and the more personal contact 

they have with each other, the less likely it is that the group’s decisions will be wise ones’’ 

(Surowiecki, 2004). For a group to be wise, its individual members should think for themselves. 
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An important crowd used as reference group in this thesis is called Betting Website. As later will 

be explained, the opinion of this crowd is determined by certain odds that, in their turn, are de-

termined by the crowd’s own bet distribution. The lower the odd of a certain outcome, the more 

people apparently will bet on this outcome. We can argue that bets placed on these odds are not 

independent but based on anchoring. Anchoring means that, if you give people a certain number 

and ask for a prediction, the predictions will be related to that number. Or as Tversky and  

Kahneman  once put it: “different starting points yield different estimates, which are biased to-

wards the initial values.’’ (Tversky, 1974) 

Consider the following example: we tell a person that there is a chance a certain event A is going 

to happen. All this person knows of event A is that the odds of it happening are 1.1 (which means 

that you bet 1 on event A to happen, and if event A happens, you get 1.1 back), and the odds of 

event A not going to happen are 100 (you bet 1 on event A not to happen, and if event A does not 

happen, you get 100 back). If we ask this person if he or she thinks event A will happen or not, 

then there is a big chance he will say event A will happen. The reason behind this is that the pay-

out  of when it happens is clearly lower than the payout when is does not happen, suggestion the 

chance of event A happening is higher than of it not happening. We can say that the odds of this 

event help determine this person’s opinion, and that the opinion is at least partly based on an-

choring. The bet distribution that determined the odds –and, with that, the opinion of people on 

this betting website- is not simply choice based on two clear options as, in the previous example. 

For each match, the betting website had 20 different possible outcomes with odds related to 

those outcomes of at least six or higher. We assume that, in this case, anchoring has less or even 

no effect on how people determine their bets since, by looking at the odds, there is no clear odd 

that suggests that a certain outcome is most likely to happen. 
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DECENTRALIZATION 

In the context of wisdom of the crowd, we defined decentralization as the ability for people to 

specialize and draw on local knowledge. In a broader, more general definition, decentralization 

means that the power does not fully reside in one central location, making it possible for people 

to specialize and draw on local knowledge (Surowiecki, 2004).  

A great example of decentralization related to wisdom of the crowd is Wikipedia. Wikipedia is an 

online platform where people can add and adjust information on anything of relevance. At the 

beginning, Wikipedia was ran by a small amount of admins, but over the last few years the high-

est number of new pages and adjustments have been made by a large amount of users that each 

add a small amount of information. (Kittur, 2007). In the case of Wikipedia, a large decentralized 

crowd creates content, with no one in charge of what content has to be created. Users with 

knowledge on specific subjects can create content related to those subjects,, and it can be said 

that the users have the ability to specialize and use their local knowledge to determine the con-

tent they create.  

Decentralization creates an environment that facilitates diversity and independence. Consider 

the difference between Microsoft and Linux, for example: Linux is an operation system created 

by Linus Torvalds, who, after completion, made the operation system an open source and free to 

use for everyone. The idea behind the open source is that, if a problem occurs, anyone from an-

ywhere can solve it. With Microsoft, on the other hand, people are hired and told to solve certain 

problems. As result of this, Linux has a very diverse crowd of users, and an unlimited amount of 

people who can work on a certain problem, where Microsoft is limited in its resources, since it 

has a limited amount of employees who, in their own turn, have a limited amount of time. As 

showed, the decentralization of Linux allows a diverse crowd of people to come up with a solu-

tion for any given problem that occurs, successfully making Linux the biggest competitor of Mi-

crosoft (Surowiecki, 2004). 
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AGGREGATION 

In the context of wisdom of the crowd, we defined aggregation as a way to transform the indi-

vidual opinions of the individual members of the crowd to a collective opinion. Where diversity, 

independence, and decentralization allow individual members of the crowd to create a valued 

opinion, aggregation is needed to combine those opinions into a representative opinion of the 

crowd.  

In the example of Galton and the country fair, Galton himself collected all the bet slips after the 

event, to determine the average. In the example of Linux, a few admins determine which of all 

possible solutions to a certain problem will be implemented, and, meanwhile at Wikipedia, a few 

admins control all new pages that have been created and all adjustments that have been made. 

The betting website itself aggregates all the bets that are being placed and adjusts its odds ac-

cordingly.  

The importance of aggregation is showcased when a situation lacks this aggregation. When we 

look at the example of the two restaurants, the used form of aggregation is watching through the 

window to determine where  the crowd wants to eat. Now,  say that the empty restaurant is not 

empty, but that the people dining inside are not visible through the window: then maybe the 

majority of the individuals of the crowd will think the empty looking restaurant is better. How-

ever, due to lack of aggregation, the crowd’s opinion is interpreted as if the other restaurant is 

better. 

Important to note is that aggregation should not be achieved at the expense of decentralization, 

diversity, or independence. For a crowd to be wise, its opinion should be aggregated without 

adjusting the opinions of its individual members. As you can imagine, if your boss asks you to 

evaluate his performance, the opinion you give might not be independent. This is why in a lot of 

experiments it is made very clear to participants that they stay anonymous or that their identity 

is only known to the experimenter to avoid their choices or answers becoming dependent.  
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COGNITION PROBLEMS 

The crowd’s opinion cannot be used to solve all problems. Sometimes the average of the individ-

ual members is just the average. When we let 100 people run a marathon, and take their average 

time, then the time we get is indeed no more than the average. Surowiecki  considers three types 

of problems that can be solved by using wisdom of the crowd. Important to note is that not all 

questions that categorize under those three types will be solved by wisdom of the crowd. In 

most of these cases, the problem does not lie within the type of question but with the crowd it-

self. If we ask a crowd of Feyenoord fans which Dutch soccer club has most supporters, we can 

expect the average answer will be Feyenoord even though the Club Position Matrix states that 

Ajax has most fans (Volkskrant 2012) In this case the problem lies not within the question, but 

within the fact that the crowd lacks diversity and is biased.  

The first kind of problem that wisdom of the crowd can help solve we discuss is cognition prob-

lems. These are problems that have –or, in the future, will have- a definitive solution, such as the 

amount of beans in a jar, who will win any game, weight of an ox, or how many items a shop will 

sell. Not only problems with a definitive answer, but also problems with answers clearly better 

than others are cognition problems,  such as where to open a new restaurant. 

One of the reasons behind the fact that wisdom of the crowd can help overcome cognition prob-

lems is that individuals will over- and underestimate certain guesses. If we ask a crowd to pre-

dict the amount of beans in a jar, there will be a part of the crowd that overestimates the 

amount, while another part will underestimate the amount of beans in the jar, making the 

crowd’s opinion more accurate on average.  

The same logic holds in a more economic environment: in the stock market a part of the stock 

brokers will overestimate the future price of a stock, while others underestimate the future price 

of a stock, making the crowd’s average accurate. Important to note is that there are individuals 

who outperform the crowd, giving individuals incentive to participate. However, if multiple situ-

ations are considered, it will not be the same individuals that outperform the crowd (Surowiecki, 

2004).  

Another reason why wisdom of the crowd helps solve cognition problems is that sometimes the 

majority outperforms the individual. The idea behind the game show Who Wants to Be a Million-

aire, for instance, was simple: a contestant has to correctly answer 15 multiple choice questions 

with four possible answers, and he or she would win a million pounds. The contestants had 

three lifelines he could use:  a lifeline where the contestant could ask the studio audience what 

they thought the correct answer was, the 50/50, where only two answers for that question re-
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mained, and ‘call a friend/expert’. Calling this experts would provide the correct answer in 65% 

of the time, while the studio audience picked the correct answer 91% of the time, showing that, 

in this case, the group outperformed the individuals. (Surowiecki, 2004).  

A more interesting example is Google. Google works the way it works due to the PageRank Algo-

rithm, which -according to Google-  “capitalizes on the uniquely democratic characteristic of the 

web by using its vast link structure as an organizational tool. In essence, Google interprets a link 

from page A to page B as a vote, by page A, for page B. Google assesses a page’s importance by 

the votes it receives. Google looks at more than the sheer volumes of votes or links; it also anal-

yses the page that casts the vote. Votes cast by pages that are themselves ‘’important’’ weight 

more heavily and help to make other pages important ’’ (Page L. a., 1998) In other words, Google 

uses the crowd to determine the results of your search, by using a weighted average of all votes 

made within the crowd. Looking at the success of Google, we may say that the Algorithm works 

very well. 
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COORDINATION PROBLEMS 

Coordination problems are problems where people try to coordinate their behavior on a certain 

matter, knowing other people will do the same. What time should I leave for work? Where do we 

want to eat tonight ? How can we make sure people get the goods and service they want? All of 

these are coordination problems. Coordination problems have in common that a person should 

not only consider what he or she thinks is the correct answer, but also what he or she thinks 

other people perceive as the correct answer. If you want to know what time you need to go work 

with your car, then you need to take into consideration how many other people are going to use 

their car at that time. Heavy traffic suggests you need to leave earlier than when there is no traf-

fic. As we can see, crowds that have coordination problems do not have independent decision 

making, since the decision of its individual members depends on the action or perceived actions 

of others. As a result, coordination problems cannot always be solved by wisdom of the crowd, 

but it is striking how often wisdom of the crowd actually can be used to solve these problems. 

To show the value of wisdom of the crowd in coordination problems, an example can be given: in 

the 1990, the economist Brian Arthur tried to solve the El Farol Problem (Brian, 1994). El Farol 

was a local bar in Santa Fe where, when it was less than 60% full, everyone would have a great 

time. However, when it was full for more than 60%, people would not have any fun and could 

better have stayed home. As we can see, the amount of fun a person has does not only depend on 

his attendance, but also on the attendance of others. Arthur assumed that people had different 

strategies to determine the amount of people that were going to the bar, and so determine if they 

want to go or not. Some would go if they had fun the last time they went (so the bar was filled for 

less than 60%), and some assumed the same amount of people would go each week, while others 

used the average over the last few weeks. He showed that no strategy yielded the best result on 

the long term, as some strategies worked for several weeks and then fell off. However, in the 100 

weeks he documented, the average amount of people in the bar was 60% of its full capacity, 

showing that, even while individual strategies depend on each other’s behavior, the groups opin-

ion was accurate (Surowiecki, 2004). 

When we go to the supermarket to buy orange juice, most of the time the orange juice is just 

there in stock for you to buy. A few days before, the orange juice was boxed and shipped to your 

supermarket, while you nor the orange juice company knew that you were going to buy the 

juice. Whether or not there is orange juice in stock depends not only on your decision to buy, but 

also on decisions of others to buy orange juice, thus making it a coordination problem. The or-

ange juice company assumed that a certain amount of people will buy that certain amount of 

orange juice. If they overstock, it will cost the supermarket money since they have to destroy the 
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orange juice that has reached its expiration date, and if they understock it, they could have sold 

more orange juice and they will get disappointed customers. Even while not always the same 

customers buy the orange juice, they can use the average of the crowd to accurately predict the 

amount of orange juice to stock. Wisdom of the crowd provides a very accurate answer on this 

coordination problem (Surowiecki, 2004). 

Where cognition problems have a definitive answer, coordination problems do not have to have 

one, since the correct answer depends on the behavior of others, which is not always same. 

Crowds can be used to predict their own behavior and to come up with a solution related to that 

predicted behavior.  
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COOPERATION PROBLEMS 

Coordination and cooperation problems have similar features, as in both problems people have 

to take the behavior of others into account. While for coordination problems people can pursue 

their own interest to come up with a good solution pursuing one’s own interest will be at the 

expense of others with cooperation problems.   
 

at the following example is that of the prisoners dilemma. In this dilemma, two criminals are 

caught and locked in separate interrogation rooms. The police does not have enough evidence to 

put them in jail for the crime they committed, and needs both criminals to tell on each other.  If 

both prisoners do not tell on each other, they get a prison sentence of five years. However, if one 

of the prisoners tells on the other while the other stays silent, then the one who tells goes free 

while the other goes to jail for 20 years. If both prisoners tell on each other they both go to jail 

for 10 years. As this problems shows, pursuing their own interest goes at the expense of the oth-

er. This is a great example to show that not all cooperation problems can be solved by wisdom of 

the crowd. Although the crowd’s optima is for both to not tell on each other and get a five-year 

sentence, the dominated strategy is actually to tell on each other and get a 10-year sentence.  
 

Getting people to pay their taxes is also a cooperation problem, since a person is best off if eve-

ryone pays their taxes except himself. In that case, this person gets the benefits of taxes (police 

force, infrastructure) without paying for it. Wisdom of the crowd can help solve this problem by 

looking at the situation in which the majority of people pay their taxes. Some people will always 

pay their taxes, as they are selfless, while others pay their taxes due to the fear of punishment for 

not paying their taxes. With this knowledge, governments can calculate the amount of effort they 

need to put into punishment of tax evaders to make the majority pay their taxes.  
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BETTING WEBSITES 
The Oxford Dictionary of English defines betting as follows: “the action of betting money on the 

outcome of a race, game, or other unpredictable event”. (Stevenson, 2010) A betting website or 

bookmaker provides the odds for those races, games, and outcomes. (Spann, 2008)distinguishes 

two types of odds: odds that adjust over time provided by prediction markets, and fixed odds 

provided by bookmakers. Prediction markets are  places where buyers and sellers trade virtual 

stocks that represent future market situations, namely outcomes of sporting events. The payoff 

or -in stock market terms- the dividend is determined by the outcome of the sport event. The 

price of each virtual stock represents the expected value of the outcome. Fixed betting odds are 

predetermined odds that determine the payout in case the event happens.  

Betting websites have three ways to make money. To clarify the three possible ways, the way of 

determining betting odds shall first be discussed.  

 

The expected value of  a bet (M) is determined by the probability of the outcome (Pi), multiplied 

with the percentage of bets on the outcome (Wi), multiplied with the odds for that outcome (Di) 

(Levitt, 2014). 

To clarify this, the following example can be given: Nadal plays against Djokovic on Roland Gar-

ros. The betting website knows the probabilities of each player to win, and also know the per-

centages of bets on each player. For simplification we shall assume the bet distribution between 

the players and the chance to win for both players are both 50%. The odds related to a 50% 

chance of winning or related to a bet distribution of 50% on both players is 1.85. This means 

that, when Nadal wins, each dollar bet on Nadal gets a 1.85 dollar return, while, when Djokovic 

wins, each dollar bet on Djokovic gets a 1.85 dollar return. Using the above stated formula, the 

expected value of a bet on this match is 0.5 (chance of Nadal winning) * 0.5 (percentage of peo-

ple betting on Nadal) * 1.85 (odds if Nadal wins) + 0.5 (chance of Djokovic winning) * 0.5 (per-

centage of people betting on Djokovic) * 1.85 (odds Djokovic winning) = 0.925. This shows that, 

for every dollar bet on this event, the expected value of that bet is 92.5 cents. The difference be-

tween 1 (price to participate) and the expected value of the bet is the expected value for the bet-

ting website. Since for every dollar bet the expected payout is 92.5 cents, this leaves the ex-

pected profit for the website to be 7.5 cents. It is important to state that this is a simplified ex-

ample, as in almost all situations neither the bet distribution nor the chance of each player to 

win is known exactly.  
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A closer look at the ways for betting website to make money needs to be taken. The first way for 

betting websites to make money is if the website knows the probabilities of the outcome, but not 

the bet distribution, like in a game of roulette. Roulette is a gambling game in which players pre-

dict on which slot on a rotating disk a small ball win end. There are 37 possible slot outcomes 

between the numbers 0 and 36. When predicting the correct outcome, the  payout is 36. So cor-

rectly predicting on which number the small balls ends grants you 36 times your stake. Since the 

odds of correctly predicting an outcome are equal to 1 in 37, the expected value of playing rou-

lette are 0.97, since 1/37 (chance of predicting the correct number) * 36 (odds when correctly 

prediction the correct number) = 0.97. This means that, for every dollar bet on predicting the 

correct number at roulette, you get an expected value of 97 cents. The difference between 1 

(price to participate) and the expected value of the bet is the expected profit for the betting web-

site, which is 3 cents in this case.   

The second way for betting websites to make money is if the website does not know the proba-

bilities of the outcome, but knows the distribution in which its bettors are going to bet. Consider-

ing the previous example, the tennis match Nadal versus Djokovic, we then assume that the bet-

ting websites exactly knows the percentages of bets placed on Nadal and Djokovic before the 

bets are actually placed. It might sounds unlikely that betting website can predict the distribu-

tion of bets made on each player, but previous results, current form, and underground they play 

on can be used to accurately predict how people are going to bet, for instance.  In our previous 

example we used that both players get 50% of the bets for simplification. The betting website 

will set the odds in the way that the percentages of bets multiplied with the odds have an ex-

pected value lower than 1. As showed above, this is because the difference between 1 and the 

expected value of the bet is the expected profit for the betting website. In the 50% example 1.85 

was chosen, as 0.5 *1.85 equals 0.925. This shows that, for each betted dollar, the expected re-

turn for tor the betting website is 7.75 cents.  

The third way for betting websites to make money is if the website knows the probabilities of 

the outcomes and the distribution in which its bettors are going to bet. As previously mentioned, 

the expected value is determined by the probability of the outcome multiplied with the percent-

age of bets on the outcome, multiplied with the odds for that outcome. If both the percentage of 

bets on the outcome and the probability of the outcome are known, the websites can adjust the 

odds to change the expected value. This is valuable since the difference between 1 (price to par-

ticipate) and the expected value of the bet are the expected returns for the betting websites. Ad-

justing the expected value for of each bet can increase or decrease the expected returns for the 

betting website. Assuming the betting website knows that for a certain event,  80% of bets is 

placed on outcome Y to happen and 20% on outcome Y not to happen. It can decrease the ex-
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pected value of outcome Y by adjusting the odds and gaining a larger average return, called the 

vig. For this method to work, the betting website does not need to know the probabilities of the 

outcome exactly, but it just needs to know it better than the bettors do (Levitt, 2014). 

Important to note is that, in the long run, betting websites only need to know either the distribu-

tion of bets or the probabilities of the outcomes to make profit. This is clarified by the following 

example: Murray plays against Federer on Rolland Garros. The bet distribution is as follows: 

40% of the bets are placed on Murray to win, and 60% of the bets are placed on Federer to win. 

The odds for Murray to win are, for example, 2.3 (since the expected value will be 0.4 * 2.3 = < 1), 

while the odds for Federer to win are, for example, 1.5 (since the expected value will be 0.6 *1.5 

= <1). Regardless of the chances for both players to win, in the long run the betting website will 

make a profit.  To clarify: if Murray has a X chance to win, and Federer has a 1-X chance to win, 

the expected value will be X (chance of Murray to win) * 0.4 (amount of bets played on Murray) * 

2.3 (odds for Murray to win) + (1-X) (chance of Federer to win) * 0.6 (amount of bets placed on 

Federer) * 1.5 (odds for Federer to win) < 1. We can substitute the distribution of bets  to X and 

1-X and the probabilities of the outcome to 0.4 and 0.6, and the formula still holds to show that 

only one of the two factors needs to be known. To summarize: as long as one of the two factors is 

known, the odds can be adjusted to the known factor and the expected value can be set in a way 

that it is lower than 1,  creating an expected profit for the betting website.  

In most cases the websites only approximately know approximate chances of each player to win 

and the approximate bet distribution. The less that is known of both factors, the bigger the vig 

(difference between the price to participate and expected value of the bet) created by the betting 

websites will be. In roulette the exact chances of winning are known, so the websites can afford 

to create a low vig (as previously shown only 3 cents) since they know that, in the long run, they 

will make a profit. The vig for sport events is larger since the chance of each player winning is 

not exactly known. They create a larger vig to ensure themselves of a profit in case they incor-

rectly predicted the bet distribution or the chance of either player winning. 

The fact that betting websites can predict outcomes better than bettors, can be explained by 

certain biases. For example, the favorite-longshot bias and home bias. Those biases show that 

bettors over- or underestimate certain effects. For example, the favorite-longshot bias, that 

shows favorite bets (bets with low odds) outperform longshot bets (bets with high odds), but 

that bettors still prefer longshots over favorites. In certain markets the vice versa effect is found. 

The home bias is that people overestimate the chances of the home team (Levitt, 2014) (Cain, 

2000) (Vlastakis, 2009) (Andrikogiannopoulou, 2011). As previously stated, betting website do 

not need to correctly predict the outcomes: they just have to predict them better than their bet-
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tors. This can be illustrated by the favorite-longshot bias. For example the odds of X to happen 

are 1.5, while the odds for X not to happen are 300. However, knowing that players have a favor-

ite-longshot bias, betting websites can place the odds for X to happen on 2 knowing bettors fa-

vorite the longshot, and put the odds of X not to happen on 100, knowing bettors will still bet on 

it since they favor the longshot. This shows that, if betting websites can properly predict the bet-

ting distributions of certain events, they can adjust the odds to decrease the expected value of 

the bet and increase the betting website’s return. 

Betting odds on websites change overtime, which is due to the fact that betting websites do not 

know the chances of the possible outcomes, but know the bet distribution. The determination of 

the odds works the same as the price of stock in the stock market: the higher the demand, the 

higher the price of the stock, or, in betting terms, the more bettors bet on a certain outcome, the 

lower the odds and possible payout of that outcome becomes. Betting websites adjust their odds 

to make sure they always make a profit. The possible payout of each outcome will always be 

lower than the total amount of money placed on all outcomes. the simplified example of Nadal 

versus Djokovic can illustrate this, with both having odds of 1.85. If, for example, 60% of the bets 

are placed on Nadal, and Nadal wins, the payout the website will have to make will be 1.11 since 

0.6 * 1.85 = 1.11.Tthis means that the website would have a loss of 0.11. However, if the website 

lowers the odds for Nadal to win for example to 1.5 when they notice the bet distribution be-

comes 60/40 in Nadal’s favor, the website will only have a payout of 0.9 and will have a profit of 

0.1. Using this method it is irrelevant for betting websites who wins as they will make a small 

profit for each bet placed since the total amount of bets placed on all outcomes will be larger 

than the possible payout of the individual outcomes. 

The betting website is used as a reference group in our experiment. We use it to test if the re-

sults of the experiment hold any real-life value. For this we need to verify that the results of the 

betting website indeed represent the opinion of its bettors. The results of the betting website are 

the predictions of the website compared to the actual results, whereas the predictions of the 

website are the odds transformed to predictions. As previously explained, betting websites work 

partly like stock markets. To determine if the results reflect the opinion of its bettors, we look at 

the market efficiency. If it is efficient, supply and demand meets one another to determine its 

price (odds). If it is not efficient, the predictions by the betting website do not have to represent 

the actual opinion of its bettors. We look at two factors that influence the market efficiency: arbi-

trage opportunities, and predictive power of the website compared to its bettors. Arbitrage op-

portunities are possibilities of placing non-risk bets that always yield a positive expected value. 

For example: if Federer plays against Nadal, and the odds on one website for Federer winning 

are 2.1, and on another website the odds for Nadal winning are 2.1, than it is possible for bettors 
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to distribute their bets in a way they create a risk-free bet that always yields a positive expected 

value. (Vlastakis, 2009)provided evidence that highly profitable arbitrage opportunities are rare 

but possible, becoming rarer in more recent periods studied. When only considering the online 

bookmakers, the arbitrage opportunities become even rarer. As previously stated, betting web-

sites can predict the outcomes better than the average bettors. However, they can only adjust 

the odds by a small margin, because otherwise bettors might recognize and exploit mispricing 

by the bookmakers (Levitt, 2014).Considering these findings, we assume that the results of the 

betting website accurately represent the opinion of its bettors, and that it can be used to test if 

the results of the experiment hold any real-life value. 
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MATHEMATICAL EXPLANATION OF WISDOM OF THE CROWD  

The Beans-in-a-Jar Experiment, Google, and estimating the weight of an ox at the country fair are 

all examples where wisdom of the crowd occurs. Those examples show that the opinion of the 

crowd can be more accurate than that of its individual members. Some of those crowd’s opinions 

were even more accurate than any opinion of the individual members of the crowd.  

If you live in a big city and want to know if it is going to rain, you can turn on the TV and watch 

the weather forecast, which will most likely provide you with an accurate answer. You can also 

look outside and see if the people passing by have an umbrella with them, which will most likely 

provide the same answer as watching the weather forecast. This is another example of a wise 

crowd. However, not all crowds are wise. In America there was a plank road boom between 

1847 and 1853. Due to the poor conditions of the roads, people sought economically beneficial 

solutions to improve the quality of the roads. When the weather was poor, a lot of small villages 

were not accessible due to the fact the roads to the villages were flooded and could not be used. 

This made trading with those villages impossible when poor weather occurred. By putting 

wooden planks on the low quality roads, the villages were accessible even with poor weather, 

which made trading with these villages always a possibility, and would drastically improve their 

economics. The plank roads were relative cheap, so affordable for small communities, making 

them seem like the perfect solution. All over America plank roads emerged and expended rapid-

ly since its benefits could easily be seen, and people assumed that, if other places have them, 

they should be beneficial, otherwise those others places would not have taken them in the first 

place. However, to be economically beneficial, the roads needed to last way longer than they did. 

Sometimes the roads needed to be replaced within a few years, while the prospect was that they 

would last at least twice as long.  Making them now economically not viable, the roads disap-

peared as fast as they came (Majewski, 1993). 

As shown in the previous examples, it is sometimes wise to follow the crowd, while other times 

it might not be.  In those two examples a clear answer can be given, and in the case of the plank 

roads the answer was clearly that it was very unwise.  

As previously stated by Surowiecki, certain requirements must be met before a crowd can be-

come wise. Often those requirements are partly met, which raises the question if in those situa-

tions a crowd is wise or not. It is clear that some of those questions have no clear yes or no an-

swer, while the crowd’s opinion might help solving problems in those situations. This raised the 

question if there could be a mathematical method to conclude if the wisdom of the crowd occurs. 

In 2007 Page created a mathematical theorem that explains the phenomenon of wisdom of the 

crowd. He called it the Diversity Prediction Theorem. The theorem shows that diversity within a 
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crowd explains the difference between the average individual error (the average individual 

opinion) and the collective error (the opinion of the crowd). The Diversity Prediction theorem 

states:  

𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 

The theorem shows that the collective error is always equal or lower than the average individual 

error, making the opinion of the crowd always equal to or better than that of its average individ-

ual member. This is due to the diversity between the members of the crowd. The following ex-

ample helps illustrate the Diversity Prediction Theorem. Two imaginary Beans-in-a-Jar Experi-

ments, both containing six beans, are used as an example to prove the theorem.  

 Alexander Peter Margo Crowd’s opin-

ion 

(collective er-

ror) 

Average indi-

vidual error 

Outcome 

Predictions amount of 

beans in the jar 1 

3 6 9 6  6 

Squared error jar 1 9 0 9 0 

 

6 

 

 

Predictions amount of 

beans in the jar 2 

9 6 3 6  6 

Squared error jar 2 9 0 9 

 

0 6  

 

Important to state is that the Diversity Prediction Theorem is based on squared errors. This 

avoids positive and negative errors cancelling one another, which would occur when a person is 

equally likely to overestimate or underestimate an outcome. This person would, in that case, 

make zero errors in total. In our example, this is represented by both Alexander and Margo. For 

the first jar Alexander underestimated the amount of beans by 3, where for the second jar he 

overestimated the amount of beans by 3. For Margo this is vice versa. If not the squared error 

but just the error was used, the error for Alexander at the first jar would be -3, since 3-6=-3. For 

the second jar the error would be 3, since 6-3=3. Alexander his total error would have been -
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3+3=0. When using squared errors Alexander’s error for the first jar is (3-6)2=9. His error for the 

second jar is (6-3)2=9. Now Alexander has a total error of 9+9=18. 

The crowd’s opinion is formed by adding all predictions and dividing them by the amount of 

predictions made. The amount of predictions in our example is 3.  

The Diversity Prediction Theorem shows that the average squared individual error for the first 

jar is 6, while the collective error is 0. The difference is explained by the prediction diversity. The 

prediction diversity shows the value of diversity is equal to the variance of the opinions of the 

people in the crowd. The variance is equal to the sum of squared differences between the predic-

tions and the outcome divided by the amount of predictions. In our example this is ((6-3) 2+(6-6) 

2+(9-6) 2)/3=6. The theorem shows that the higher the diversity, the higher the variance is, and 

the wiser the crowd becomes compared to its average individual members. 

To show the value of the Diversity Prediction Theorem, we provided a real life example. For 

American Football fans one of the most important days of the year is draft day. On draft day 

American football teams can pick former college football players to play for their respective 

teams. Since the teams pick in turns, it is important for teams to know what other teams want to 

pick. To clarify, the team that picks first can select any player it wants, the second team that 

picks can select any player it wants except the previously picked player, the third team can se-

lect any player except the two players previously selected, and so on. For this reason analyst or 

experts are working day and night before draft day to most accurately predict the draft. (Page S. 

E., 2007) used those predictions of the experts to provide proof of wisdom of the crowd applied 

on a crowd of experts. This is represented in the following table 1. 

table 1 
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Table 1 shows that the crowd’s error is even lower than that of the best expert, with a collective 

error of 34.4, average individual error of 137.3, and a prediction diversity of 102.9. 

The Diversity Prediction Theorem shows that the collective error (the crowd’s opinion) is lower 

than the average individual error (opinion of the average individual of the crowd) due to predic-

tion diversity. From this we can deduce certain limitations. 

The first limitation is that the diversity prediction theorem only states something about the wis-

dom of the crowd compared to its own members, since its value is based on the average error of 

its members and the diversity between its members. The more diverse the crowd, the higher the 

prediction diversity and the higher the difference between the collective error and the average 

individual error. This only shows that the crowd’s opinion is wiser than the opinion of its aver-

age member, but gives no real value on the opinion compared, for example, with the correct pre-

diction. If we would ask elementary school kids to predict the NFL draft, we probably get a very 

high prediction diversity since there is a high chance the school kids would give very different 

answers. However, the average individual error will probably be very high, and the collective 

error, while lower than the average individual error, will probably still be very high. If we com-

pare the collective error of a crowd of kids to the average individual error of our experts, there is 

a very high chances that experts predict way more accurately than the crowd of kids. When we 

want to check if the crowd’s opinion holds any real-life value, it has to be compared to the opin-

ion of other crowds or experts.  

The second limitation is that, since the model is based on error, events must be measurable in 

terms of error for the model to work. This is easy when we ask people the amount of beans in a 

jar, the NFL draft order, or the outcome of a horse race. Difficulties arise when it becomes harder 

to calculate an error, for example for the question if 9/11 or the challenger crash could have 

been avoided. 

The third limitation is that the Diversity Prediction Theorem contains the term average individ-

ual error. Because of this, it is important that members of the crowd try to make correct predic-

tions. Giving  extremely wrong predictions (on purpose) has a big effect on the average individu-

al error. For example, if we go back to the Beans-in-a-Jar Experiment, if one of the participants 

jokes and gives an answer 1.000.000 times higher than the actual outcome, no matter what the 

other participants answer, the crowd’s opinion will be most like inaccurate. From this we can 

conclude that people should have the right incentive or get the right incentive to participate. 

Experts in the NFL draft are judged on their picks, so already have the right incentive, but for the 

Beans-in-a-Jar example a financial incentive for the correct prediction could help avoid inten-

tional extremely incorrect answers. Rules can be made to exclude those intentional extremely 
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incorrect answers: however, those rules need to be carefully watched to make sure they only 

exclude the intentional extremely incorrect answers and do not decrease the prediction diversi-

ty. 

The fourth limitation of the model is that it gives a more accurate prediction than the average 

individual prediction. However, it does not have to have a higher chance of giving the exact cor-

rect prediction compared to each individual of the crowd. Most of the time it even has a lower 

chance of giving the exact correct prediction. To clarify, when we look at the NFL draft of 2005, 

we see that the crowd’s prediction for Williamson is 9.7. We know for sure that Williamson will 

not drafted as 9.7th since that is not possible. So even while the prediction of the crowd is more 

accurate than that of most experts, since only Prisco and judge had a better prediction, it is still 

incorrect. 

The fifth and last limitation has most influence on this thesis. The Prediction Diversity Theorem 

compares the crowd’s opinion to the opinion of the average member of the crowd. In formula 

terms: the Prediction Diversity Theorem compares the error of the crowd to the average indi-

vidual error. The possibility exists that the average individual error does not properly represent 

the  opinion of the average member of the crowd.  

The following imaginary Beans-in-a-Jar Experiment helps to clarify this limitation. In the exam-

ple the amount of beans is 6. 

 

 

 Alexander Peter Margo Crowd’s opin-

ion 

(collective er-

ror) 

Average in-

dividual er-

ror 

Outcome 

Predictions amount of 

beans in the jar 3 

6 6 9 7  6 

Error jar 3 0 0 9 1 3  

 

Looking at the difference between the collective error of 1, and the average individual error of 3, 

it can be concluded that, if we want to obtain a lower error, we should follow the opinion of the 

crowd over its average individual members. Nevertheless, by ranking the errors it can be seen 

that if the crowd is followed, resulting in an error of 1, there would have been a 66% chance to 

get an even lower error by just following a random member of the crowd. This is because the 
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error of Alexander and Peter is 0, and lower than that of the crowd. Depending on the question, 

it can be determined if wisdom of the crowd occurs. Only looking at the Prediction Diversity 

Theorem,  one should always want to follow the crowd, since the crowd’s opinion is always more 

accurate than that of its average individuals. However, if the question for example would be: 

“does following the crowd grant a higher probability of getting a lower error compared to fol-

lowing a random individual in the crowd”, arguments can be found that suggest wisdom of the 

crowd does not occur in this example. 

This limitation can be overcome by looking at rank of the collective error compared to the indi-

vidual errors. However, the rank of the collective error compared to the individual error does 

not paint the full picture. The collective error could have a lower rank than most of the individu-

al errors, but the absolute difference between the errors might be insignificant. By testing both 

the rank  and the absolute difference, it can be concluded if the crowd’s opinion holds real-life 

value compared to its individual members.  
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HYPOTHESIS 

As previously stated, Surowiecki claimed that, whenever the crowd satisfies the  four conditions 

that characterize a wise crowd (diversity of opinion, independence, decentralization and aggre-

gation), a crowd’s judgement should likely be accurate. In this paper an environment is created 

where those conditions are satisfied. 

In the chapter The Mathematical Explanation of Wisdom of the Crowd the Diversity Prediction 

Theorem is explained. Since the created environment satisfies the four conditions, wisdom of the 

crowd should be present in our experiment, and from this the first hypothesis is created. 

Hypothesis 1: wisdom of the crowd is present when a crowd is asked to predict the outcome of the 

2014 FIFA World Cup scores. 

In the experiment a high information and a low information group were created. Since the high 

information group had more knowledge of soccer compared to the low information group, we 

predict that the high information group has a lower average individual error than the low infor-

mation group. From this the second hypothesis is created. 

 Hypothesis 2:the average individual error of the high information group is significantly lower than 

that of the low information group. 

 We predicted that the individual members of the high information group predict more accurate-

ly than the individual members of the low information group. This creates the assumption that 

the prediction diversity of the high information group should be lower than that of the low in-

formation group. This is based on the fact that more accurate predictions mean lower variance, 

which entails a lower prediction diversity. From this the third hypothesis is created. 

Hypothesis 3: the prediction diversity of the low information group is higher than the prediction 

diversity of the high information group. 

The value of the opinion of the crowd tested in our created environment should be compared to 

a crowd that holds real-life value. From this we can conclude if the opinion of the crowd from 

our created environment holds any real-life value. The possibility exists that the opinion of the 

crowd might have a higher predictive value than that of its average members without holding 

real-life value. By comparing this to a real life opinion we can test this. From this we derive our 

fourth hypothesis. 

Hypothesis 4: the predictive value of the crowd should not deviate significantly from the control 

crowd, to verify it has predictive value. 
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 EXPERIMENT  

To test the previously stated hypotheses, an experiment is conducted that meets said previously 

stated conditions. A questionnaire was conducted among 124 students of the Minkema College 

in Woerden. The students are all between the age of 15 and 18 and are following a HAVO or 

VWO education. The first part of the questionnaire consisted of a survey, which in its own turn 

consisted of 15 soccer related questions. The survey’s questions are related to the top 4 coun-

tries on the EUFA ranking: the Spanish Primaire division, the German Bundesliga, the English 

Premier League, and the Italian Serie A, plus the Dutch Eredivisie, and the survey also has a few 

questions related to the Champions League and the Europe League. 

The survey was designed to divide the subjects into groups based on low and high soccer 

knowledge. In a trial run conducted among 10 subjects of whom the level of soccer knowledge 

was known beforehand, the subjects were compared to one another. The subjects with high soc-

cer knowledge scored above 12 correct answers, while the subjects with low soccer knowledge 

scored below 3 correct answers. This gives no reason to assume that the outcome of the survey 

does not reflects actual knowledge on the subject.  

The second part of the questionnaire consist of  a prediction sheet of the 48 first-round games of 

the 2014 FIFA World Cup in Brazil. Subjects were asked to fill in their exact prediction of the 48 

first-round games of the World Cup. The subjects were told that the subject with the most cor-

rect predictions would win 30 euros, which is used as incentive to fill in the questionnaire seri-

ously. Whenever the survey or prediction sheet showed the subject did not fill in the question-

naire seriously, the subject was removed. In total 5 subjects were re-

moved from the research, showing predictions with results 300% high-

er than the average result of the other subjects, such as estimated out-

comes between 6-6 and 10-10 for all 48 matches. Some also responded 

with made up answers on the survey which showed they did not take it 

seriously. 

 

GROUPS 

The 119 subjects could be divided in 16 groups according to the an-

swers given in the first part, ranking from 0 to 15 correct answers. Since 

a lot of groups consist of a low amount of subjects, the following three 

groups were created. The first group consists of all 119 students, and 
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this group will be referred to as the crowd. The second group consist of 37 students who gave 

0,1 or 2 correct answers, and this group will be referred to as the low knowledge group. The 

third group consist of 30 students who gave 12, 13, 14, or 15 correct answers: this group will be 

referred to as the high knowledge group. From the website www.bwin.com the outcomes and 

matching quotes to those outcomes were taken and reformed into predictions. When referring 

to the group betting website, those predictions are being referred to. 

 

 

  

http://www.bwin.com/
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DATA ANALYSIS.  

To test for wisdom of the crowd, we want to use the Prediction Diversity Theorem. To do so, the 

predicted outcomes and actual outcomes should be compared to one another to create an out-

come in the value of an error. When we look at the NLF draft outcomes and predictions, they are 

transformed into errors by comparing the predictions and outcomes and square the difference. 

When we want to do the same for the 2014 World Cup predictions and outcomes, the predic-

tions and outcomes should be transformed to rankings first. The following formula was created 

to transforms them into an error term based on rankings. 

((𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚) − (𝑎𝑐𝑡𝑢𝑎𝑙 𝑔𝑜𝑎𝑙𝑠 ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚

− 𝑎𝑐𝑡𝑢𝑎𝑙 𝑔𝑜𝑎𝑙𝑠 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚))² 

The clarify,  whenever a player predicts a draw, the ranking becomes 0 since 0-0, 1-1, 2-2 are all 

equal 0. Whenever a player predicts a win for the home team, the ranking becomes positive 

since 1-0, 2-1, 3-2 are all >0. Whenever a player predicts a win for the away team the ranking 

becomes negative since  0-1, 1-2, 2-3 are all <0.  

When we subtract the actual ranks from the predicted ranks, we get the error, which we then 

can square to avoid the sum of errors to cancel one another out. Now we can use the Diversity 

Prediction Theorem to prove there is wisdom of the crowd.  

Using this method has certain limitations.  

 More the one outcome can hold the same rank, for example 0-0 and 2-2. The predictions 

3-3 and actual outcome 1-1 are seen as the same in this model since they both hold rank 

0. This is incorrect since a person who predicts 1-1 with the outcome  1-1 should have a 

lower error than a person who predicts 3-3 with the outcome 1-1.  

 Since the error is based on the differences between ranks, the error for prediction rank 1 

and outcome rank 3 is equal to prediction rank 1 and outcome rank -1. In outcome 

terms, a 1-0 prediction with the outcome 3-0 created the same error as a 1-0 prediction 

with the outcome 0-1. This means that a person who predicts correctly which team wins, 

but incorrectly predicts the goal difference has the same error as a person who incor-

rectly predicts which team wins with the same incorrect goal difference. Logically those 

errors should differ. 

A new formula that can be used if the previously two limitations occur has been created. We 

tested if the results from the new formula and the formula based on rankings differ. If they do 

not differ, we can assume the two limitations do not occur in our data and we can use the formu-
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la based on the rankings. If the predictions of the new method differ from the formula based on 

rankings then we will use the new formula to analyze the data. To compare and analyze the pre-

dicted results with the actual results, a formula has been created that formulates an error term. 

To overcome the above stated limitations, the formula needs to meet certain requirements.  

 The error term for prediction 3-1 and outcome 1-3 should be equal to prediction 1-3 and 

outcome 3-1 

 The error term must increase with an increasing goal difference between predicted out-

come and actual outcome. 

 The error term of a predicted win with outcome draw with a goal difference Z > the error 

term of a predicted win with outcome win with a goal difference Z 

 The error term of a predicted win with outcome draw with a goal difference Z < the error 

term with a predicted win with the outcome lose with a goal difference Z 

The formula is still based on the formula used to compare predictions and actual ranks during 

the NFL draft in 2004. The following formula is created: 

0,5 ∗ (|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 −  𝑎𝑐𝑡𝑢𝑎𝑙 𝑔𝑜𝑎𝑙𝑠 ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚|)² + 0,5

∗ (|
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑔𝑜𝑎𝑙𝑠 𝑎𝑤𝑎𝑦

 𝑡𝑒𝑎𝑚
|) ² + 𝑌 

.  

Y is the penalty for incorrectly predicting the outcome in terms of win/draw/lose, where Y is 0 

whenever the predicted result in terms of win/draw/lose is correct, for example if a prediction 

is 2-2 and the actual result is 3-3. Y will be 2 whenever the predicted results in terms of 

win/draw/lose are incorrect, but only minimally incorrect, for example the prediction is a draw 

and the actual result is a win or lose or vice versa. Whenever the prediction is a win and the ac-

tual result is a lose or vice versa then Y will become 4.  

Important to note is that, with the ranked based formula, the prediction diversity is completely 

based on the variance, and the prediction diversity increases with the variance. With the new 

formula this is not the case. The prediction diversity is still partly based on the variance, since a 

part of the error term is determined by the goal differences. The larger the goal differences, the 

larger the variance becomes, which increases the prediction diversity. Another part of the pre-

diction diversity is based on the penalty: it could be possible that the penalty could decrease the 

prediction diversity. For example, 60% of the individuals predicted a draw, but 40%  predicted a 

clear win for a certain team, then there is a possibility that  the crowd’s opinion is a win for that 

certain team. If in this scenario the game ends in a draw, then prediction diversity decreased due 
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to the penalty (since the crowd gets a penalty of 2 while the average individual error only gets a 

penalty of 0.4 * 2 = 0.8) 

Since the predicted outcomes of the participants are clean predictions like 1-1, 2-1, 3-2 the for-

mula can be used to create an error term for each participant. However for the group predictions  

those results are not clean numbers, for example 1.643 – 1.235. To determine which predictions 

count as win/draw/loses the following formula is created.  

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 > 1 = ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < −1 = 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 > 1.5 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚 = ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚 > 1.5 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 = 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛 

If none of the following formulas is satisfied, the outcome is seen as a draw. 

The reasoning behind the formula is as follows: for a team to win, it should score significantly 

more goals than the other team. On individual predictions this is clear, since the predicted win-

ning team always scores at least 1 goal more than the opposed team, which is clearly significant. 

However, we can argue that, for example, the group-predicted score of  1.643 – 1.235 does not 

significantly differ from each other. We ca not use an absolute difference lower than 1 to deter-

mine if a team scores significantly more than the other team. We illustrate this by using an abso-

lute difference of 0.6. A prediction of 1.8 -1.2 might suggest that the team that scores 1.8 scores 

significantly more than the team that scores 1.2 times since, if we round the numbers, it suggests 

a 2-1 score. However, that same absolute difference suggests less of a winner when we look at a 

prediction of 2.3 and 1.7 since, if we round the numbers, it suggests a 2-2 draw. This immediate-

ly shows that we also cannot round numbers to clarify which team wins, since a prediction of 

2.6-2.4 would suggest a 3-2 prediction, while we can argue that the group does not significantly 

predict a winner in this case. Since most goal predictions range between 1 and 3, goals the fol-

lowing formula was created: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 > 1.5 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚 = ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛 

and 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚 > 1.5 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑔𝑜𝑎𝑙𝑠 ℎ𝑜𝑚𝑒 𝑡𝑒𝑎𝑚 = 𝑎𝑤𝑎𝑦 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛 

This transforms scores like 1.81-1.20 into wins for the 1.8, while it transforms scores like 2.3-1.7 

into draws, which fits our data. 
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The control crowd used in hypothesis 4 is the group betting website. The formula used to trans-

form the betting odds into probabilities is (1/ odd) / (the sum of all 1/every odd). For example if 

the odds of a certain event happening are 2.3, and the odds of that certain event not happening 

are 1.5, then the chance of that event happening according to the odds is (1/2.3) / (1/2.3 + 

1/1.5) = 39.5 %. When the probabilities are multiplied with the outcomes related to those odds, 

the sum of those outcomes is the predicted result by the betting website. The same rules apply 

for the betting websites as for the groups to determine if they predict a win/draw/lose. 

To clarify,  the odds of the game Brazil vs Croatia have been taken and transformed into the pre-

dicted results of 2.301539 – 0.701223, which is equal to a predicted victory for Brazil. 

Brazil vs. 

Croatia 
 Betting odds  1/betting odd Percentage /100 Home Away 

1 0 5,8   0,1724138  0,125178  0,125178 0 

2 0 6   0,1666667  0,121006  0,242011 0 

2 1 9   0,1111111  0,08067  0,161341 0,08067 

3 0 8   0,125  0,090754  0,272262 0 

3 1 13   0,0769231  0,055849  0,167546 0,055849 

3 2 31   0,0322581  0,02342  0,070261 0,046841 

4 0 12   0,0833333  0,060503  0,242011 0 

4 1 21   0,047619  0,034573  0,138292 0,034573 

4 2 56   0,0178571  0,012965  0,05186 0,02593 

4 3 161   0,0062112  0,00451  0,018038 0,013529 

5 0 21   0,047619  0,034573  0,172865 0 

5 1 37   0,027027  0,019623  0,098113 0,019623 

5 2 101   0,009901  0,007188  0,035942 0,014377 

6 0 41   0,0243902  0,017708  0,106249 0 

6 1 76   0,0131579  0,009553  0,057318 0,009553 

6 2 226   0,0044248  0,003213  0,019275 0,006425 

7 0 91   0,010989  0,007978  0,055849 0 

0 1 161   0,0062112  0,00451  0 0,00451 

8 0 226   0,0044248  0,003213  0,0257 0 

0 0 14   0,0714286  0,05186  0 0 

1 1 9   0,1111111  0,08067  0,08067 0,08067 

2 2 21   0,047619  0,034573  0,069146 0,069146 

3 3 81   0,0123457  0,008963  0,02689 0,02689 

0 1 20   0,05  0,036302  0 0,036302 

0 2 51   0,0196078  0,014236  0 0,028472 

1 2 27   0,037037  0,02689  0,02689 0,05378 

0 3 151   0,0066225  0,004808  0 0,014424 

1 3 81   0,0123457  0,008963  0,008963 0,02689 

2 3 71   0,0140845  0,010226  0,020452 0,030677 

1 4 276   0,0036232  0,002631  0,002631 0,010522 
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2 4 251   0,0039841  0,002893  0,005785 0,01157 

     1,3773476  1  2,301539 0,701223 

     sum of 1/odds total percentage/100 goals  

Table 2 

As we know, odds are determined as follows: the higher the odds, the less likely the event occurs 

and the less people have bet on the odd. The more people bet on a certain result, the lower the 

odd gets. By taking the sum of 1 divided by each odd, we get the weight of each individual odd. If 

we look at table 2, the odd 5.8 for the predicted result 1-0 has a weight of 12.5178%. This means 

that, from all the bets placed, 12.5178 % thought 1-0 was going to be the result. This suggests 

that 12.5178% thinks Brazil will score once, which is equal to 0.125178. The odd 9 for the pre-

diction 2-1 has a weight of 8.067%. This means that 8.067% of the people think Brazil will score 

twice and Croatia will score once, which equals 0.161341 goals for Brazil and 0.08067 goals for 

Croatia. If we transform all the odds into weights, and multiply the weight with their prediction 

and take the sum of the results, we get the predicted results of the betting website, in this case 

2.301539 goals scored by Brazil and 0.701223 goals scored by Croatia. 
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RESULTS 

As stated in chapter X: Data Analysis, to determine if we can use the ranking based formula we 

must compare the results of the ranking based formula and the formula used to overcome the 

two limitations that might occur using the ranking based formula. 

To determine if the results of the formulas differ, we use a Wilcoxon sign ranked test to compare 

the groups -crowd, low knowledge group, high knowledge group, and betting website- for both 

formulas. If the difference or lack of difference between groups is equal for both formulas, we 

can conclude that the results for both formulas are equal, and we can use the ranked based for-

mula; if not, we can only use the new formula to overcome the limitations of the ranked based 

formula.  

The ranked based formula yields the following results based on a significance level of 0.05: 

Ranked based formula Difference between sig Reject or retain 

 Crowd – low knowledge 0.664 retain 

 Crowd – high knowledge 0.505 retain 

 Crowd – betting website 0.459 retain 

 Low knowledge – high knowledge 0.703 retain 

 Low knowledge – betting website 0.452 retain 

 High knowledge – betting website 0.039 reject 

Table 3 

The new formula to overcome its limitations yields the following results based on a significance 

level of 0.05: 

New formula Difference between sig Reject or retain 

 Crowd – low knowledge 0.975 retain 

 Crowd – high knowledge 0.808 retain 

 Crowd – betting website 0.634 retain 

 Low knowledge – high knowledge 0.800 retain  

 Low knowledge – betting website 0.434 retain 

 High knowledge – betting website 0.112 retain 

Table 4 

As the table 3 and 4 above show,  while the ranked based formula and new formula show a lot of 

similarities, there is a significant difference between the groups high knowledge-betting website 
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for the ranked based formula while that difference is not significant for the new formula. Since 

both formulas do not yield the same results, the new formula will be used to analyze the data. 

For hypothesis 1 we want to verify that wisdom of the crowd is present when a crowd is asked 

to predict the outcome of the 2014 World Cup scores. Before we can answer this, we must de-

termine when wisdom of the crowd is present. Two requirements must be met: the collective 

error should be significantly lower than the average individual error, and the collective error 

should be among the lowest 50% of the errors since otherwise asking a random member of the 

crowd yields a higher than 50% chance to get a more accurate prediction than following the 

crowd’s opinion. 

We can conclude that wisdom of the crowd is present when a crowd is asked the predict the 

outcome of the 2014 World Cup scores, since there is a significant difference between the aver-

age individual error and the collective error and the collective error is among the lowest 50% of 

errors. As the table below shows, for all groups the Wilcoxon sign ranked test has evidence that 

there is a significant difference between the average individual error and group error based on a 

significance level of 0.05. 

New formula Difference between sig Reject or retain 

 Crowd – crowd error 0.000 reject 

 High knowledge- high knowledge error 0.002 reject 

 Low knowledge – low knowledge error 0.000 reject 

Table 5 

When we look at the rankings of errors, in table 5 we see that, when we look at the crowd com-

pared to the individual errors, only two individuals have a lower error. When we look at the high 

and low knowledge groups, only three individuals have a lower error. This means that asking a 

random individual only yields a lower error than following the crowd 2 out of 119 times ,or a 

lower error than following the high or low information group3 out of 199 times. We conclude 

that hypothesis 1 is satisfied. 

For hypothesis 2 we want to verify that the average individual error of the high information 

group is significantly lower than that of the low information group. Two requirements must be 

met to verify hypothesis 2: the average individual error of the high information group must be 

lower than that of the low information group, and the difference must be significant. 

The average individual error of the high information group is equal to 169.9, and the average 

individual error of the low information group is equal to 198.2. The Wilcoxon sign ranked test 
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shows that there is a significant difference between the errors of the high information and the 

low information group based on a significance level of 0.05. 

New formula Difference between sig Reject or retain 

 High information error- low information er-

ror 

0.002 reject 

Table 6 

We conclude that hypothesis 2 is satisfied. 

For hypothesis 3 we want to verify that the prediction diversity of the low information group is 

higher than the prediction diversity of the high information group. First we determine the pre-

diction diversity of the both groups. Since in the new formula the prediction diversity is not 

completely based on the variance, we subtract the collective error from the average individual 

errors to determine the prediction diversity. For the low information group the predictive diver-

sity is 60.75, while for the high information group the predictive diversity is 32.88. The Wilcoxon 

sign ranked test shows there is a significant difference between the predictive diversity of the 

low information and the high information group based on a significance level of 0.05. 

New formula Difference between sig Reject or retain 

 Diversity low information- diversity high infor-

mation 

0.010 reject 

Table 7 

We conclude hypothesis 3 is satisfied. 

For hypothesis 4 we want to verify that the predictive value of the crowd does not deviate signif-

icantly from the control crowd, to verify it has predictive value. To do this, we compare the bet-

ting website to the other groups. The Wilcoxon sign ranked test shows there is no significant 

difference between the group betting website and the other groups. 

New formula Difference between sig Reject or retain 

 Crowd – betting website 0.634 retain 

 Low knowledge – betting website 0.434 retain 

 High knowledge – betting website 0.112 retain 

Table 8 

We conclude hypothesis 4 is satisfied. 
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CONCLUSION 

First and foremost, we wanted to test if wisdom of the crowd is present in the crowd of our ex-

periment. Since hypothesis 1 is satisfied, we conclude it is in fact present. This means that, when 

it comes to predicting the group-stage games of the FIFA World Cup in Brazil, the crowd gives a 

more accurate prediction than its average individual members. The same holds for the low and 

high knowledge group. In betting sense on predicting the correct outcome  this holds little value, 

since ‘more accurate’ is still wrong. However, possibly a more accurate prediction holds value 

when predicting the amount of goals scored. Further research could look into the possibilities of 

the value of wisdom of the crowd in betting situations.  

We know that a prediction is based on information and error. Hypothesis 2 provided us with 

evidence that knowledge on this particular subject is equal to more information. The average 

members of the high information group had significantly more accurate predictions and lower 

errors than the average members of the low information group. Nevertheless, hypothesis 3 pro-

vided us with evidence that the crowd’s diversity of the low information group was higher than 

the crowd’s diversity of the high information group, making the predictions of the low infor-

mation group more diverse, which adds value to its prediction. Overall we saw that, while the 

average predictions of the high information group were more accurate than of the low infor-

mation group, the group’s opinions did not significantly differ. Showing that, in this particular 

situation,  the value of having extra information was equal to the value of having more diversity. 

This finding shows that -not only in theory, but also in practice- diversity holds value: as much 

value to overcome the lack of knowledge between the two groups. 

When we look at hypothesis 4 we can conclude two things. First, the betting website outper-

formed the group. This is expected, since, if the group outperformed the betting website, it sug-

gests that the crowd’s opinion could be used to generate profit on gambling. The betting web-

sites could be seen as a crowd of its individual bettors, as the odds represent the opinion of its 

bettors. The outperformance of the betting website compared to the other groups confirms the 

fact that betting websites make more accurate predictions. We cannot determine if this value is 

generated from a higher amount of information or a lower error, since we lack this knowledge. 

The second conclusion is that the betting website did not significantly outperform the other 

groups. Showing that the opinion of the crowd holds value compared to the betting website pro-

vides evidence that the crowd’s opinion holds real-life value.  
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DISCUSSION AND LIMITATIONS 

As previously mentioned, the Prediction Diversity Theorem has certain limitations. While we 

tried to overcome these limitations, we made some consensus. First, the predication diversity is 

not completely based on variance anymore, which might decrease its mathematical value. Sec-

ondly, the Prediction Diversity Theorem is used to predict if the crowd is more accurate than its 

average individual member. Nevertheless,, in betting situations ‘more accurate’  holds little value 

when you only get paid if you are correct, and not when you are ‘less incorrect’. The more accu-

rate prediction could have value when it comes to predicting the amount of goals scored in 

matches. Currently the betting websites provide the option and odds to bet on a certain amount 

of goals, like over/under 1.5 goals or over/under 2.5 goals. In hindsight that information could 

have had added value, this information was not collected during the research.  

One might argue that the results of the World Cup group-stage games are related to each other. 

Since all teams only play three games, a team that wins the first game might change their tactics 

for the second game. In other words: a team that wins game one might play game two with the 

intention not to lose it, while a team that loses game one will play game two with the intention to 

win in order to go on to the next round. An example of this was Spain, which lost game one ver-

sus the Netherlands, and got countered in game two and lost versus Chili. In our experiment all 

groups had to make prediction on all the games at the same time. If the predictions are done 

after each match, the results might be more accurate.  

As we partly previously explained, the FIFA World Cup is a competition on its own, and without 

further research we cannot assume that, if wisdom of the crowd occurs for prediction World Cup 

group-stage games, it also occurs when prediction regular games in regular competitions. The 

same reasoning applies for the high and low knowledge group. While we provided evidence that 

showed that a higher amount of knowledge created a lower average individual error, we cannot 

conclude this will hold for all sports. 

At last, but might most interesting, the empirical evidence that the opinion of the high and low 

information groups did not differ due to higher/lower amount of information and diversity. Fur-

ther research could be conducted related to the subject. Questions arise like: does increasing the 

amount of information always has a trade-off with diversity? Is it possible to increase the diver-

sity without decreasing the information?. If groups can be formed were increased diversity does 

not go at the expense of information or vice versa could provide additional power to wisdom of 

the crowd. Making crowds more wise, and the topic more interesting. 
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