
Enumerating Longest Increasing Subsequences andPatience SortingSergei Bespamyatnikh and Michael Segal�Department of Computer ScienceUniversity of British Columbia, Vancouver, B.C. Canada V6T 1Z4December 23, 1999AbstractIn this paper we present three algorithms that solve three combinatorial optimiza-tion problems related to each other. One of them is the patience sorting game, inventedas a practical method of sorting real decks of cards. The second problem is computingthe longest monotone increasing subsequence of the given sequence of n positive inte-gers in the range 1; : : : ; n. The third problem is to enumerate all the longest monotoneincreasing subsequences of the given permutation.Keywords: Algorithms, longest increasing subsequence, van Emde Boas tree1 IntroductionIn this paper we consider three related to each other following problems:Longest increasing subsequence of permutation. Given an arbitrary permutation �of f1; 2; 3; : : : ; ng, increasing subsequence < s1; s2; : : : ; sk > of � is a subsequence satisfyings1 < s2 < : : : < sk; �(s1) < �(s2) < : : : < �(sk)The goal is to �nd the longest increasing subsequence of a permutation �.Enumerating all increasing subsequences of permutation. Given an arbitrary per-mutation � of f1; 2; 3; : : : ; ng, �nd all longest increasing subsequences of a permutation.Patience sorting. Take a deck of cards labeled 1; 2; 3; : : : ; n. The deck is shu�ed, cardsare turned up one at a time and dealt into piles on the table, according to the rule : A cardwith a low index may be placed on a card with a higher index, or may be put into a newpile to the right of the existing piles. At each stage we see the top card on each pile. If the�Work by Michael Segal has been supported by the Paci�c Institute for Mathematical Studies, Canada2



turned up card is higher than the cards showing, then it must be put into a new pile to theright of the others. The object of the game is to �nish with as few piles as possible.There are a lot of papers that deal with the longest increasing subsequences and patiencesorting problems. Patience sorting problem was discovered by Mallows [6] who actuallyproposed a way for manually sorting cards. In the same paper Mallows show that the numberof piles in patience sorting relates to the Young tableaux that was invented by Schensted [7] inorder to study the length of the longest increasing subsequence l(�). Floyd [3] described thepatience sorting in letters between him and Knuth [5] who gave an O(n logn)-time algorithmfor computing longest increasing subsequence for an arbitrary sequence of n numbers. Ina very recent paper, Aldous and Diaconis [1] proved several interesting properties relatedto this problem. In particular, they proved that the greedy strategy (that is, to alwaysplace a card on the leftmost possible pile) is optimal and, moreover, the number of piles thegreedy strategy ends with is equal to l(�). The brute-force approach in [1] requires O(n2)comparisons. They [1] pointed out that according to the paper by Fredman [2] the algorithmto �nd l(�) (and, thus, patience sorting) must perform 
(n logn) comparisons. Nevertheless,Hunt and Szymanski [4] gave an O(n log logn) runtime algorithm for computing the longestincreasing subsequence for a given permutation. Their algorithm actually solves more generalproblem of computing the longest common subsequence of a given two sequences. As a resultthe performance of this algorithm applied to the longest increasing subsequence problem israther complicated and requires redundant extra space (although remains O(n)).We will present a direct, simple O(n log logn) runtime algorithm algorithm in orderto solve the longest increasing subsequence problem which can be used to report all suchsubsequences in optimal time. The previous approach [4] does not allow to do this. Moreover,we show how to extend our approach to solve patience sorting problem.We present an algorithm for computing longest increasing subsequence and enumeratingall the subsequences in the next Section. In Section 3 we describe how to change thisalgorithm in order to solve the patience sorting problem. We conclude in Section 4.2 Longest Increasing SubsequenceWe recall that the input of out problem is some permutation � of n numbers. For eachelement �(i), 1 � i � n the algorithm computes the length of the longest increasing subse-quence that ends on �(i). We keep all these values in an array L. In other words, L[�(i)]is the length of the longest increasing subsequence that ends on �(i). The main idea of thealgorithm is to maintain a list T such that j-th element of this list is the smallest element ofpermutation � that increasing subsequence of length j ends with. To implement T we usethe data structure invented by van Emde Boas [8] that allows to maintain the sorted list ofintegers in the range 1; : : : ; n in O(log logn) time per insertion and deletion.The data structure T allows the following list operations:� insert(i) - insert the number i into S,� delete(i) - delete the number i from S,� next(i) - get the successor of i in S, if it does not exist return nil (takes O(1) time),� prev(i) - get the predecessor of i in S, if it does not exist return nil (takes O(1) time).3



First StageAt the �rst stage we proceed from the left to the right of the permutation �. Considerthe moment when i-th element �(i) is processed. We need to determine the length L[�(i)]of the longest increasing subsequence that ends on �(i). This length is de�ned by longestincreasing subsequence that ends on some element of � that is smaller than �(i) and hasbeen considered before. In order to do this we insert the number �(i) to the list T . Thelength L[�(i)] is equal to 1 plus the length associated with the predecessor of �(i) in list T ,i.e. L[�(i)] = 1+L[prev(�(i))]. If there is no predecessor we set L[�(i)] = 1. If the successorof �(i) in the list T has the same associated length, then we delete the successor of �(i) fromT . If there is no successor of �(i) we are done and proceed to the next step.Second StageAt the second stage we have �lled array L. It turns out that L contains enough information toconstruct the longest increasing subsequence of � in linear time. Indeed, the length k = l(�)of this subsequence �l = < s1; s2; : : : ; sk > is determined by the largest value that is storedin L. This subsequence �l satis�es the following property:L[�(s1)] = 1; L[�(s2)] = 2; : : : ; L[�(sk)] = l(�):The index �(sk) of the cell that stores the largest value in L is equal to the last element ofthe list T . We can �nd it either in the list T or by simple scanning the array L.To �nd the remaining elements of the subsequence the algorithm goes from the sk-thelement of permutation to the �rst one. As was mentioned above j-th element of thissubsequence �l is the �rst index i such that L[�(i)] = j. We give below the formal descriptionof the algorithm (the output is the sequence < s1; s2; : : : ; sl(�) >).Theorem 2.1 The algorithm above correctly �nd the longest increasing subsequence of agiven permutation and has O(n log logn) running time.Proof. The correctness of the algorithm follows from the discussion above. The steps 15{18form an output sequence < s1; s2; : : : ; sl(�) >.It is easy to evaluate the running time. All steps from 3 to 10 take constant time exceptsteps 4 and 10. Steps 4 and 10 are accomplished at most n times spending O(log logn) time.Clearly, the second stage takes linear time. So the total running time is O(n log logn).

4



Longest Increasing Subsequence1. T = ;;First Stage2. for i = 1 to n do3. m = �(i);4. insert(m)5. if prev(m) 6= nil then6. L[m] = L[prev(m)] + 1;7. else L[m] = 1;8. if next(m) 6= nil then9. if L[next(m)] == L[m] then10. delete(next(m));Second Stage11. k = L[1]; index = 1;12. for i = 2 to n do13. if L[i] > k then14. k = L[i]; index = i;15. sk = index; j = k � 1;16. for i = index to 1 do17. if L[�(i)] = j then18. sj = i; j = j � 1;2.1 Reporting all subsequencesThe array L obtained by the previous algorithm contains implicit information to enumerateall longest increasing subsequences of �.Theorem 2.2 All longest increasing subsequences of a given permutation using array L canbe reported in optimal O(n+Kl(�)) time and optimal O(n) space, where K is a number ofsuch subsequences.Proof. We �rst describe our algorithm and then prove its correctness and running time.Recall that L[�(j)] is the length of the longest subsequence with �(j) as the last element.5



Observation: Consider the indices i1 < i2 < : : : < im, such that L[i1] = L[i2] = : : : = L[im].Then, the sequence < �(i1); �(i2); : : : ; �(im) > is decreasing.For each element j, 1 � j � n, we store two additional indices left1 and left2. Theyare de�ned as follows. Value of left1(j) is the largest index i, such that L[i] = L[j], i < j.If such i does not exist, we set left1(j) = nil. Value of left2(j) is the largest index i, suchthat L[i] = L[j]� 1, i < j. If such i does not exist, we set left2(j) = nil. We can computeall the values of left1 and left2 in linear time by scanning of array L.Our algorithm is based on a recursive procedure Enumerate that receives as an input oneparameter z and reports all longest increasing subsequences with z as the last element. Ituses one auxiliary array Out that keeps the current subsequence to report. The array Outis �lled in the reverse order. The length of this array is equal to l(�). The initial call ofEnumerate is done with parameter z = �(sk), where index sk was computed at the secondstage of the previous algorithm.Reporting all subsequencesEnumerate(sk);Procedure Enumerate(z)// Outputs all the subsequences that ends by z.1. if ((L[z] = l(�)) or (z < Out[L[z] + 1]) then2. Out[L[z]] = z; // z is the current element of subsequence.3. else return;4. z1 = left2(z); // z1 is the predecessor of z in subsequence.5. if z1 = nil then6. print(Out); // Out is already �lled.7. else Enumerate(z1); // continue to �ll Out.8. while left1(z1) 6= nil do9. Enumerate(left1(z1)); // start a new subsequence.It is easy to see that the running time of the above algorithm has linear space and runs in timeO(n+Kl(�)), where where K is a number of the longest monotone increasing subsequences.To show the correctness we observe that in fact our algorithm simulates depth �rst searchstrategy, i.e., it searches for the < 1; 2; :::; l(�) > subsequences between the values of thearray L. On the current step of our algorithm we know the tail of the current longestsubsequence, namely Out[L[z]]; Out[L[z] + 1]; : : : ; Out[l(�)]. The algorithm tries to increasethe tail of the current subsequence by looking on all possible values for the (L[z] � 1)-th6



position. Our observation above provides an e�cient way to �nd these values using pointersleft1 and left2, cutting the search at line 1.3 Patience SortingA permutation � of f1; 2; 3; : : : ; ng can be identi�ed with an arrangement of n-card deck,by specifying that �(i) is the index of the card at position i. The algorithm of Aldous andDiaconis [1] applied the following greedy strategy. A card is always placed on the leftmostpossible pile.Let P be an array that store the top cards of piles. To store information about the cardsin piles we use an array cards of length n de�ned as following: cards[i] is the index of thecard that lies below the card with index i. Let S be the data structure of van Emde Boas [8]that represents the list of top cards.Consider the moment when i-th card indexed by �(i) is turned up. Note that the topcards in piles form increasing sequence of integers. We need to �nd the leftmost pile witha top card whose index j is greater than �(i). In order to do this we insert the number�(i) to the list S of top cards. The number j is the successor of �(i) in the list S after theinsertion of �(i). To reect the placement of �(i) on j, we set cards[�(i)] = j and delete jfrom S. Eventually, we �ll an array P using list S. We give below the formal description ofthe algorithm.Theorem 3.1 The algorithm of patience sorting is correct and has O(n log logn) runningtime.Proof. The algorithm uses the correct greedy approach [1]. The Steps 11{13 form an outputarray P containing the top cards that are stored in S. Note that the �rst element of the listS is 1.Considering running time of the algorithm. In total all steps except steps 6 and 10 takelinear time. Steps 6 and 10 are performed at most n times spending O(log logn) time and,thus, leading to the total O(n log logn) running time.

7



Patience sorting1. S = ;;2. for i = 1 to n do3. P [i] = card[i] = 0;4. for i = 1 to n do5. k = �(i);6. insert(k);7. j = next(k);8. if j 6= nil then9. card[k] = j;10. delete(j);11. k = i = 1;12. while k 6= nil do13. P [i] = k; k = next(k); i = i+ 1;4 ConclusionsIn this paper we investigated three related problems and we developed e�cient algorithmsthat solve them. The key idea of the algorithms is based on using van Emde Boas [8] datastructure for operations on permutations. We expect that the same technique can be usedin order to solve the other permutation problems.References[1] D. Aldous and P. Diaconis, \Longest Increasing Subsequences: From Patience Sortingto the Baik-Deift-Johansson", Bull. Amer. Math. Soc., 36 (1999) pp. 413{432.[2] M. Fredman, \On computing the length of the longest increasing subsequence", DiscreteMath., 11 (1975), pp. 29{35.[3] B. Floyd, unpublished work, 1964.[4] J. Hunt and T. Szymanski \A fast algorithm for computing longest common subse-quences", Communications of ACM, 20 (1977), pp. 350{353.[5] D. E. Knuth, \Sorting and Searching", The Art of Computer Programming, 3 (1973),Addison-Wesley. 8



[6] C. Mallows, \Patience sorting", Bull. Inst. Math. Appl., 9 (1973), pp. 216{224.[7] C. Schensted, \Longest increasing and decreasing subsequences", Canad. J. Math., 13(1961), pp. 179{191.[8] P. van Emde Boas, \Preserving order in a forest in less than logarithmic time and linearspace", Inform. Process. Lett., 6 (1977), pp. 80{82.

9
View publication statsView publication stats

https://www.researchgate.net/publication/222708429

